

Sending Emails
 The safe way
By Kristian Fiskerstrand

Copyright 2008, Kristian Fiskerstrand

http://emailsafeway.com

This work is licensed under the Creative Commons Attribution-No
Derivative Works 2.0 Generic. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to:

 Creative Commons

 559 Nathan Abbott Way

 Stanford, California 94305

 USA

You are free to Share -- to copy, distribute, display, and perform the work
Under the following conditions: You must attribute the work in the
manner specified by the author or licensor. You may not alter, transform, or
build upon this work.

For any reuse or distribution, you must make clear to others the license
terms of this work.

Any of these conditions can be waived if you get permission from the
copyright holder. Contact information can be found at
http://emailsafeway.com

OpenPGP Key: 0x6b0b9508

Primary key fingerprint: 65F1 73BE C045 0DA0 7A58 6197 16E0 CF8D 6B0B 9508

Table of Contents
Introduction.. .1
Understanding digital signatures....................................3

What is a digital signature..................................3
How can a digital signature help you?...........3

Encryption...5
History of encryption......................................6
Industrial espionage..............................7

The Echelon surveillance system...7
Possible legal requirements...............................8

HIPAA..8
Gramm-Leach-Bliley Act...8

OpenPGP...9
Introduction to OpenPGP.......................................9
Implementations..9
Public Key Infrastructure...9
Hybrid system...10
Asymmetrical key types...........................10

RSA...10
DSA...11
ElGamal..12

Digest Algorithms / hashes................12
SHA-1..12
SHA-2 family of hashes..13
RIPEMD160...13

Symmetrical key types...14
Advanced Encryption Standard Process......................................14
AES...14
Twofish...14
Blowfish..15
IDEA..15

The Web of Trust... .17
The social problem..17
Key Validity / Trust..18
Keyservers...19
Using Certificate Authorities to extend the WoT...............................19

A balanced cryptosystem...21
GNU Privacy Guard..22

Open Source - The GNU Project..22
What is GNU Privacy Guard?...........................22
Installing GnuPG..22
Generating your first key..................................23
Generating a revocation certificate.................................... 26
Backing up the keyrings..................27
Verifying a key..27

How to sign a key using GnuPG..28
How to assign trust to a key using GnuPG..29

Marginal Trust..29
Full Trust..29

Ultimate Trust...29

Configuring GnuPG29
Organization in a grander scale....................................31
Configuring your email client.......................................32

Mozilla Thunderbird and Suite..32
First time use... ..32
Account settings...33
Enigmail settings..33
Retrieving keys...34
Signing keys..34
Sending and refreshing keys...35

OS X's Mail.app............................36
Using GPG Relay for mail clients in Windows....................40

Generating your first keypair.....................................40
Configuring relays...42
Configuring the keyrules..44

Evolution....................................46
Key management..47
Small drawback..47

1 Sending emails – the safe way

Introduction
Talking to an acquaintance on the phone, it is generally easy to know
whether you're talking to the one you expected. This is however not
necessarily as easy when sending an email. As a result the credibility of
email messages in general is lower and implicitly many would rather talk to
someone one the phone over sending an email, despite email's advantages
for efficient communication.

And there are many advantages: Email is an asymmetrical form of
communication, which doesn't require the other party to be present at the
exact time you yourself have the time for it. It gives both the sender and
the recipient time to properly formulate the communique in an
unambiguous way, as well as do the necessary research for the information
contained to be as accurate as possible. Our focus here will however be on
another aspect: Emails enables the possibility of secure communication.

There is an old proverb stating: "There is no use closing the door, once the
horse has left the barn". Sadly many ignore any security considerations,
often on a basis of claiming it too difficult of a concept to grasp. This
excuse is often used until, and sometimes even after, the issue is overdue
escalation.

It is about time for this to change. Since you are already reading this book
I hope you don't do so because you just had a security breach, or if you
do; I urge you to inform others of your reasoning in order to help them be
pro-active in protecting their privacy and their data and hope that the
results in your own case did not lead to any permanent ramifications.

Because security is usually considered a secondary, or even tertian need, it
increases the difficulty of educating people. We do not generally sit down in
front of our computer wanting to manage our security. Rather we want to
send emails, browse web pages, download software, and we want security
in place to protect us while we do these things.

A paper written in 1998 named Usability of Security: A Case Study by Alma
Whitte and J.D. Tygar (CMU-CS-98-155), where they call this element the
unmotivated user property discusses this. It follows up by defining the
abstraction property which states “Computer security management often
involves security policies, which are systems of abstract rules for deciding
whether to grant accesses to resources. The creation and management of
such rules is an activity that programmers take for granted, but which may
be alien and unintuitive to many members of the wider user population.”

Introduction

by Kristian Fiskerstrand 2

Combining the effect of the abstraction property and the unmotivated user
property can give scary results. The general user will not understand the
basis for the policies put forth in security applications without education,
but at the same time, the general user is not to to be expected to be
interested in learning about security.

This book is logically divided into two. A great deal of the content is a
generic introduction to digital signatures and encryption on a general basis.
The rest will, however be quite practical. Hopefully both parts are useful to
you.

Bruce Schneier is often quoted with an expression stating: “Security is a
process, not a product”. Hopefully this book can help you gaining both
interest and knowledge into the process of securing your email
communication as well as your data, and help you increase the credibility
of emails, by sending emails the safe way.

Introduction

3 Sending emails – the safe way

Understanding digital signatures
What is a digital signature
A digital signature is a part of the email that, when properly implemented,
is mostly invisible to the user. It does however have some unique features
that makes it very valuable to add credibility for those seeking it.

As opposed to an analog signature of a standard letter, digital signatures
for our purposes accomplishes two goals. The first use is to verify the
sender (authentication). This is also done by an analog signature, if you
know the persons handwriting well enough and trust that the signature is
not a copy.

However, a digital signature also verifies that the content has not been
tampered with (data integrity), because, opposed to analog signatures, the
digital signature is created based on the content it signs, using a digest
algorithm as discussed later in this book. If anyone were to change the
content of a digitally signed document, the signature would be invalidated.

Historically both of these functions were performed by the use of seals. In a
time with limited resources and knowledge with regards to the art of
deception it often served the purpose well. Today's attackers are however
slightly more sophisticated.

The thing is, an ordinary signature today means little or nothing at all.
People change the handwriting over time, and how the signature gets
depends on the context it is singed in; the available space to sign on, if it is
rushed or not, what kind of pen is used et cetera. But probably the greatest
problem is the recipient's ability to properly verify that the signature
actually comes from the intended sender.

Digital signatures are far superior to analog signatures in each aspect, and
this gives email an advantage over both ordinary letters and faxes, if used
properly, which you hopefully will be guided to by reading this book.

How can a digital signature help you?
If you run any kind of business you want to be able to know that the
sender of the email is the one that first ordered your services. For instance
a web hosting company receiving an email asking for the password of one
of the domain hosting services to be reset, or the file permissions assigned
to a different user. You will want proof that the sender is whom he claims to

Understanding digital signatures

by Kristian Fiskerstrand 4

be, and if the user submitted a public key e.g. when paying for the
package, this can easily be handled.

Another good practical example where the use of digital signatures vital is
signing of software packages or other files that are to be distributed,
exempli gratia over the Internet. Presuming that you have gotten the public
key through a trusted source, or when downloading the last version of the
program, you can then use the signature to verify that the file has not been
altered. A real world example where this would have helped is with regards
to the Internet Relay Chat (IRC) client BitchX, that came under attack
using Domain Name Server (DNS) poisoning. Without going into too many
technical details, which would bore most, in summary people downloaded a
copy of it that contained spyware, because the download got directed to
another server than the official one.

Two-hundred and fifty users of the Swedish bank Nordea got their bank
accounts tapped after first having been infected with a modified version of
the trojan horse "haxdoor" resulting in a loss for the bank of about $1.2
Million USD.

Trojan Horse:

The term trojan horse was coined as a result of a historic event
between the Greek and Trojans in the city of Troy. The Greek offered
a wooden horse as a gift to the Trojans, allowing the greeks hidden
in the horse access behind the walls of the city.

The analogy of this is wildly used in computer terminology today,
representing a virus or worm opens a backdoor to the system for
malicious individuals to connect, and gain control of, the system.

Understanding digital signatures

5 Sending emails – the safe way

Encryption
Data/Content that can be read and understood without any special
measures is called plaintext, or cleartext. When you go through the
encryption process you get ciphertext as output, data that can appear
garbled and has to be decrypted before it once again can be read as
cleartext.

Cryptography is the science of using mathematics to encrypt and decrypt
data. It enables you to store sensitive information or transmit it across
insecure channels (like the Internet) so that it cannot be read by anyone
except the intended recipients. While cryptography is the science of
securing data, cryptanalysis is the science of analyzing and breaking secure
communication. Classical cryptanalysis involves a combination of analytical
reasoning, application of mathematical tools, pattern finding, patience,
determination and luck. Cryptology covers both cryptography and
cryptanalysis.

Lets start off by a simple question: Do you write down sensitive data on the
back of a postcard? If the answer is “no” and I hope it is, why not? Because
you know, that anyone dealing with the mail under ways; postal workers,
the delivery guy, or anyone peaking in your mailbox, can read it. The same
goes for e-mail, except then it's done electronically in a matter of seconds.
Why do you put mail in an envelope? Breaking a sealed envelope is a felony
in most countries, and as such it adds a level of judicial protection to the
content in addition to making it more difficult to read. The solution for
putting emails in an envelope is even harder to break through, but not
necessarily more difficult to apply; it is called encryption.

In Norway the need for encryption escalated into a political fiasco in 2006.
The prime minister's office has the website smk.dep.no and as such email
addresses of the employees ends with @smk.dep.no . In a quick glimpse a
PR worker for the Norwegian labor party sent an email containing key
points for a political debate later that day to @smk.no , hence leaving out
the “dep” part.

This is of course a completely different domain name, and hence it ended
up in the inbox (catch-all enabled to get <everything>@smk.no) of a
Norwegian corporation. The one receiving the email, supporting another
political party than the labor party quickly forwarded it to the party he
supported, and the labor party got questioned about the content in a fairly
humiliating context on a live TV debate later the same day.

The end of this story was that the government purchased the smk.no

Encryption

by Kristian Fiskerstrand 6

domain name for 16,000 USD, a relatively small sum compared to other
popular domain names, but still the grandest one known for the .no top
level domain.

But it is important to remember that this can happen to others as well, and
if only the parties involved used encryption it could all have been avoided
as the recipient would have been unable to read the content of the email.

What about communication between a lawyer and a client? Or the
communication between the business leader and consultant? The
norwegian firm Synovate performed a survey amongst Norwegian business
leaders, lawyers and consultants. The results were not surprising, but still
dissapointing. 30% of the participants admits to sending confidential
information through email, while at the same time 50% states that it is not
safe to send confidential information using email as means.

History of encryption
The first recorded person to use secure communication was Julius Caesar.
He used a shift cipher a variant of a substitution cipher, with a key of three.
This means that an A get turned into a D, a B get turned into a E et cetera.

This method has forever since been referred to as the caesar's cipher and it
works like this: Write down the alphabet , then write it again, but this time
move each character a given number of positions, in this case three.

Plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Now, if I want to write SECRET in plaintext it would read VHFUHW as
ciphertext.

It is unknown how effective the Caesar cipher was at the time, but it is
likely to have been reasonably secure, not least because few of Caesar's
enemies would have been literate, let alone able to consider cryptanalysis,
that is the art of deciphering an enciphered message.

Today, however, methods such as the Caesar's cipher are considered weak
cryptography. Although it might be enough to protect your data from
classmates in kindergarten, it won't protect it from any government or
against industrial espionage. The focus throughout this book is therefore
solely on strong cryptography. But as with the case of the Caesar's cipher,
what is strong today, might not be strong tomorrow, as computer power
increases and mathematics evolve. Thus one should not claim something to
be impenetrable. A conservative view and carefully following the

Encryption

7 Sending emails – the safe way

development will get you much further, and the strong encryption utilized
by OpenPGP is the strongest available today.

Industrial espionage
Corporations goes out of their way to protect its proprietary interest. Yet
many doesn't focus on securing the technical aspect of the day-to-day
operations, mostly due to the lack of knowledge on the subject.

There are known examples where a company with armed guards at the
front gate and thick steel doors placed an unprotected wireless access point
in the window of the structure. As a result of this, the same data that was
protected by armed guards was available to anyone in a car across the
street with a wireless-enabled laptop.

There are several examples throughout the history of how important
ensuring privacy can be for the strategical outcome. Look at the stock
prices of some companies that are about to be merged, and how strongly
trading regulations protect insider information.

But the clearest example is probably communication during wartime. It
was, for instance of vital importance for the outcome of World War II that
the German Enigma cipher was cryptanalyzed (broken). Today Bletchley
Park outside London is a museum that can be visited as a reminder of this.
There are many fascinating documentaries about Alan Turing and The
Bombes that are considered the predecessors of today's computers.

However, as most doesn't want to associate its strategies with those of war
let us look at a specific business related example. But first a little
information about the Echelon system to get some background information.

The Echelon surveillance system

The European Parliament conducted an investigation of the Echelon
surveillance system in a period between 1999 and 2004. The Echelon
system is probably the greatest surveillance effort ever established. The
US National Security Agency (NSA) has created a global spy system, which
captures and analyses virtually every phone call, fax, email and telex
message sent anywhere in the world. ECHELON is controlled by the NSA
and is operated in conjunction with the Government Communications Head
Quarters (GCHQ) of England, the Communications Security Establishment
(CSE) of Canada, the Australian Defense Security Directorate (DSD), and
the General Communications Security Bureau (GCSB) of New Zealand.
These organizations are bound together under a secret 1948 agreement,
UKUSA, whose terms and text remain under wraps even today.

Encryption

by Kristian Fiskerstrand 8

The final report1 that was published show a list of examples in its chapter
10.7 (page 103), of which I want to focus on one of them. This is the
Airbus versus Boeing case of 1994. The American National Security Agency
used its network to intercept the communication between Airbus and a
client both Boeing and Airbus was negotiating with in Saudi Arabia.

They did this by intercepting faxes and telephone calls and forwarded the
information to Boeing and McDonnell-Douglas. The end result being that
the Americans won the 6 billion US dollars contract.

Possible legal requirements
There are several examples of legal requirements requiring careful handling
of data for privacy matters. In USA two such regulations are The American
Health Insurance Portability and Accountability Act and The Gramm-Leach-
Bliley Act.

HIPAA

The American Health Insurance Portability and Accountability Act is a set of
rules with recommendations and requirements for entities such as health
plans, doctors, hospitals and other health care providers. This regulation
challenges all entities to be able to assure that all patients' account
handling, billing and medical records should be protected.

More information can be found at at http://hipaa.org

Gramm-Leach-Bliley Act

The Gramm-Leach-Bliley Act consists of regulations developed for financial
institutions, it is also known as the Financial Modernization Act 1999.

This federal law enables the United States to control financial institutions
and the manner in which they handle and process private information of
individuals. The Privacy Rules apply to

financial institutions and their activities. Affected institutions could also be
non bank companies that deal with lending, brokering, auditing,
transferring or safeguarding money, preparing return of tax payment,
providing financial advice and credit, providing residential real estate
settlement services, collecting consumer debts, and more. The Act consists
of Privacy obligation policy which emphasizes protection of non-public
personal information. More information can be found at at
http://banking.senate.gov/

1 http://emailsafeway.com/files/echelon.pdf

Encryption

9 Sending emails – the safe way

OpenPGP
Introduction to OpenPGP
OpenPGP is the most widely used email encryption standard in the world.
The OpenPGP standard was originally derived from PGP (Pretty Good
Privacy), first created by Phil Zimmermann in 1991, and is now maintained
by the OpenPGP Working Group of the Internet Engineering Task Force.

One of the great advantages of the framework is that it is flexible in terms
of which cryptographical methods is to be used, id est it doesn't depend on
one specific digital signature algorithm, or digital encryption algorithm. As
such it is sustainable throughout changing times.

Some of the content in this chapter, including information about different
key types and digest algorithms is mostly for people with a special interest.
Hence you can safely skip over the content and go to the next chapter. I
do, however feel it is necessary to write something about it in order to
present OpenPGP adequately.

Implementations
The most common implementations of the OpenPGP standard are the
products GNU Privacy Guard that will be discussed at a later point and the
commercially available PGP product found at http://www.pgp.com.

I will focus on GnuPG since it is open source software available for free, but
there is no obstacle to communicate safely between the different
implementations.

Public Key Infrastructure
The foundation for OpenPGP evolve around something called public key
infrastructure, often abbreviated PKI. Using PKI, that the special key used
to encrypt a message is not the same as used to decrypt it. When a
different key is used for encryption and decryption, the scheme is referred
to as asymmetrical. If, on the other hand the same key is used both for
encryption and decryption, the scheme is referred to as symmetrical.

An analogy would be a lock in the daily life. You can safely transmit the
locking key, referred to as a public key in an asymmetrical scheme. While

OpenPGP

by Kristian Fiskerstrand 10

you still keep the unlocking key, the private (or secret) key.

You can then make the public key available for everyone, but only you keep
the private key yourself. So if a neighbour walks by your door to find it
unlocked, he or she can lock the door, using the locking key, but still not be
able to unlock it again.

Hybrid system
OpenPGP is a hybrid system. For each new message that is sent, the
content of the message is first compressed, then encrypted using a
symmetrical block cipher to a random session key of a given length. This
session key again is encrypted using the Public Key Infrastructure (PKI) to
the different recipients' public keys. Hence, only the session key has to be
encrypted multiple times and not the message.

Asymmetrical key types
Although the default settings are a good choice for most, those who grow
interested in knowing what it is doing will want to know about the different
types of keys in existence.

Although some key types can be used both for encryption and signing, it is
generally recommended never to use the same key for both uses at the
same time. As a result of this a keyset generally consists of a master
signing key and an encryption subkey. More advanced users will also
consider using a signing subkey. The advantage of this is that it can be
revoked at any time and generate a new signing subkey, but still have
signatures from others for the master key in order to keep your position in
the web of trust.

A signing subkey should always be cross-signed with the master signing
key, otherwise you can't know if the subkey truly belongs to the master key
without requiring a challenge from the one claiming be the key holder.

Historically the PGP key type was RSA version 3, although version 4 keys
are more common today. Following is a little information about RSA.

RSA

RSA is short for Rivest, Shamir, Adleman, the names of the creators of the
algorithm. RSA keys can, in theory be of any size, although most will want
a 2046 bit or a 4096 bit key. Its security is based on the factoring problem,
id est it is easy to calculate a product of two primes, but not easy to go

OpenPGP

11 Sending emails – the safe way

from the product to get the two factors again as well as the RSA problem.

Clifford Cocks, a British mathematician working for the UK intelligence
agency GCHQ, described an equivalent system in an internal document in
1973, but given the relatively expensive computers needed to implement it
at the time, it was mostly considered a curiosity and, as far as is publicly
known, was never deployed. His discovery, however, was not revealed until
1997 due to its top-secret classification, and Rivest, Shamir, and Adleman
devised RSA independently of Cocks' work.
(http://en.wikipedia.org/wiki/RSA)

DSA

DSA is the Digital Signature Algorithm, or the Digital Signature Standard
(DSS). Version 1 was specified in Federal Information Processing Standards
Publication 1862 adopted in 1994. DSA is originally defined with the key
length 1024 bits, and a q-size of 160 bits. Support for larger key sizes has
only recently been added with the introduction of DSA2. As a result of this
older implementations of OpenPGP might lack the ability to properly use
DSA2 keys.

As opposed to RSA, DSA requires a specified q-size to be used for signature
generation. The relationship between the key sizes defined in DSA2 and the
q-sizes, and as such the hashes that can be used is listed in the table
below.

DSA key size
q-

size
Hashes that can be used

1024 160 SHA-1, SHA-224, SHA-256,
SHA-384 or SHA-512 hash

2048 224
SHA-224, SHA-256, SHA-
384 or SHA-512 hash

2048 256 SHA-256, SHA-384 or SHA-
512 hash

3072 256
SHA-256, SHA-384 or SHA
512 hash

Using a hash that is greater than the q size will lead to truncation, and the
q size will be used for signature generation.

ElGamal

ElGamal is named after the creator, Taher ElGamal and is baseed on the
discrete logarithmic problem for security. ElGamal keys are only used for
encryptions. Although it is technically possible to generate a signing key
using this key type, there have been security reasons not to and the
support for such keys are generally not included. The Digital Signature

2 http://www.itl.nist.gov/fipspubs/fip186.htm

OpenPGP

by Kristian Fiskerstrand 12

Algorithm is a variant of the ElGamal signature scheme that counters the
issues that was discovered, but the method itself is not to be confused with
ElGamal.

Digest Algorithms / hashes
First of all, let me make very clear that there is a difference between a
cryptographic hash, or a digest algorithm, and the procedure commonly
referred to as encryption. And the difference is in the ability to reverse the
action. When you encrypt something, you want to be able to decrypt it to
read it at a later point. This is not true for digest algorithms, they serve a
very specific purpose.

SHA-1

The SHA (Secure Hash Algorithm) family is a set of related cryptographic
hash functions. The SHA algorithms were designed by the National Security
Agency (NSA) and published as a US government standard. SHA-1 has a
size of 160 bits and is traditionally the default digest algorithm.

This algorithm has however been cryptographically broken, in that the
operations required to find a collision has been reduced from 280 operations
(while factoring in the birthday paradox of a 160 bit original digest length)
to at least 263 operations.

Most of the attacks are given plaintext attacks, say you have two different
contracts, one that says $1,000 and one that says $1,000,000. You send
off the one saying client is supposed to pay $1,000 and the signature is
valid for the $1,000,000 too. The basis of this attack is that you had access
to alter both messages beforehand by padding using NULL characters. If
the client was smart he would have altered the contract slightly before
signing to avoid such an attack.

It is however only a matter of time till a collision can be produced of an
arbitrary given text, and one should move on to other, and stronger,
hashes.

SHA-2 family of hashes

The SHA-2 family of hashes consists of several digest lengths. The most
common are sha256 and sha512 The numbers represents the length of the
digest algorithms, 256 bits and 512 bits respectively.

These were first released as an official standard in 2002 (FIPS 180-23), and

3 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

OpenPGP

13 Sending emails – the safe way

as such there are compatibility issues with prior OpenPGP implementations,
and should be used accordingly.

The other family members are sha384 and sha224, these are however only
truncated versions of sha512 and sha256 respectively, and are not seen as
much in practice.

RIPEMD160

RACE Integrity Primitives Evaluation Message Digest is a 160-bit message
digest algorithm (cryptographic hash function) developed in Europe by
Hans Dobbertin, Antoon Bosselaers and Bart Preneel, and first published in
1996. It is an improved version of RIPEMD, which in turn was based upon
the design principles used in MD4, and is similar in performance to the
more popular SHA-1.

There also exist 128, 256 and 320-bit versions of this algorithm, called
RIPEMD-128, RIPEMD-256, and RIPEMD-320, respectively. The 128-bit
version was intended only as a drop-in replacement for the original
RIPEMD, which was also 128-bit, and which had been found to have
questionable security. The 256 and 320-bit versions diminish only the
chance of accidental collision, and don't have higher levels of security as
compared to, respectively, RIPEMD-128 and RIPEMD-160.

RIPEMD-160 was designed in the open academic community, in contrast to
the NSA-designed algorithm, SHA-1. On the other hand, RIPEMD-160 is a
less popular and correspondingly less well-studied design.

Source: http://en.wikipedia.org/wiki/RIPEMD

Symmetrical key types

Advanced Encryption Standard Process

The Advanced Encryption Standard (AES) is a process by the US
government. Fifteen different symmetrical block ciphers were submitted to
the process, in alphabetical order: CAST-256, CRYPTON, DEAL, DFC, E2,
FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent,
and Twofish. Out of these the five block ciphers: MARS, RC6, Rijndael,
Serpent, and Twofish got to the final round of selection, of which Rijndael
got selected as AES.

The interesting factor might be that from a purely academic point of view,

OpenPGP

by Kristian Fiskerstrand 14

Rijndael was not the most secure algorithm, however it was the most
resource-efficient choice. NIST states “Based on the security analysis
performed to-date, there are no known security attacks on any of the five
finalists, and all five algorithms appear to have adequate security for the
AES. In terms of security margin, MARS, Serpent, and Twofish appear to
have high security margins, while the margins for RC6 and Rijndael appear
adequate. Some comments criticized Rijndael for its mathematical
structure and Twofish for its key separation property; however, those
observations have not led to attacks.” 4

AES

As written in the Advanced Encryption Standard Process, Rijndael got
selected as the AES. AES is defined with key lengths of 128, 192 and 256
bits, referred to as AES128 (or simply AES), AES192 and AES256.

Twofish

Twofish was an AES candidate provided by Bruce Schneier. Although the
candidate did not get selected for AES, he writes “Of course I am
disappointed that Twofish didn't win. But I have nothing but good things to
say about NIST and the AES process”.5

Twofish utilizes 128 bit data blocks, and can use a key length up till 256
bits.

Blowfish

Blowfish, is as Twofish, designed by Bruce Schenier. It was originally
designed to replace the aging Data Encryption Standard and can use a key
size between 32 and 448 bits.

There have been concerns about the 64 bit block sizes used, as it can leak
information about the cleartext with message lengths greater than 232 data
blocks (accounting for the birthday attack). That said, this is very unlikely
to affect email messages, but twofish is generally recommended in
situations where larger plaintext is to be encrypted (more than 32
gigabytes).

IDEA

IDEA is short for International Data Encryption Algorithm. The cipher was
designed under a research contract with the Hasler Foundation, which
became part of Ascom-Tech AG. IDEA uses a 128 bit key on 64bit blocks,
and is patented in a number of countries.

4 http://emailsafeway.com/files/r2report.pdf , chapter 6.1

5 http://www.schneier.com/crypto-gram-0010.html#8

OpenPGP

15 Sending emails – the safe way

IDEA was used in Pretty Good Privacy (PGP) V2.0, and was incorporated
after the original cipher used in v1.0 ("Bass-O-Matic") was found to be
insecure. It is an optional algorithm in OpenPGP. IDEA is patented in at
least Austria, France, Germany, Italy, Japan, The Netherlands, Spain,
Sweden, Switzerland, The UK and The US. The patents will expire in 2010 -
2011. Today, IDEA is licensed worldwide by MediaCrypt.

IDEA is freely available for non-commercial use, as well as available outside
the patent areas, and it is required for backwards compatibility with
systems such as PGP 2.0. That said, I would urge the individual to upgrade
to a newer system supporting more alternatives.

For advanced users only:

For GnuPG version 1 adding IDEA support is a relatively trivial
matter (for an advanced user in a situation that requires it in the
first place, this should be very few). Windows users can download
the pre-compiled binary (.dll) from
http://emailsafeway.com/files/ideadll.zip . Uncompress the archive
and put the idea.dll file in c:\lib\gnupg\ (create the necessary
folders). After that add the configuration line “load-extension idea”
to gpg.conf. Users of other operating systems will have to compile it
from source, information about how this can be done is found in the
.c source code. The file itself can be downloaded at
http://emailsafeway.com/files/idea.c.gz .

For GnuPG version 2 adding IDEA support can be slightly more
tricky, at least it was, since no compatible version existed for it. I
wrote this myself, and made it available at
http://www.kfwebs.net/articles/article/42 .

OpenPGP

by Kristian Fiskerstrand 16

The Web of Trust
The social problem

Despite its many advantages, the primary disadvantage of being able to
send emails in a safe manner is that, to be able to make proper use; as
many as possible require compatible systems.

This is a social problem that can only be met by education with regards to
safe communication. I hope that, in addition to configuring the system
yourself, also will find others that can be interested and help them
configure and use OpenPGP and hence start building your own Web of
Trust.

This is a natural way to start using OpenPGP. First installing it on your own
computer. Then help an acquaintance or a family member to install a
compatible system and hence you two will be able to communicate
securely. Other persons can then be added to the Web of Trust one by one,
expanding it little by little.

As with telephone services, if only one person has a phone, its not worth
anything to you. The network is what makes it valuable. Until people
understands the necessity for safe communications others won't be able to
make proper use of it either. Hopefully this book will make it easier for
yourself and others to secure communication your communication.

I recommend advertising that you use OpenPGP yourself in order for others
that use it to know that they can communicate with you securely.
Personally I have the following in my email signature of every outgoing
email:

This email was digitally signed using the OpenPGP

standard. If you want to read more about this, visit:

http://www.secure-my-email.com

Public PGP key 0x6B0B9508 at http://www.kfwebs.net/pgp/

The Web of Trust

17 Sending emails – the safe way

Key Validity / Trust

Now, simply having the public key of a person isn't enough, as anyone can
create a keyset with any data and upload it to a keyserver. This is why you
should verify with the person that it indeed is their own key. If this is a
friend it is generally fairly easy as you can call and verify the key id and
fingerprint, and recognize by voice that it is the correct person. Or if it is a
business associate and you get to see his driver's license, and note down
the key id and fingerprint. But if it is someone more distant it gets more
difficult.

That is where the Web of Trust comes into play. To show yourself and
others that you have verified that another person's public key in fact belong
to the person, and hence confirmed the identity of the owner, you digitally
sign the other person's key. You may, or may not, trust that the other
person properly verify and sign keys, but if you believe that the individual
does, you can use the digital signature verification again to verify your own
trust.

Why all this? Now, if someone trust you to properly verify keys, they can
know that your friend is who he claims he is, by looking at your digital
signature in his or her public key. They don't have to go through the work
of verifying the key, you have already done so.

Ok, that got a little bit complex, so let us illustrate it with a graph.

Now, it is important to understand that whether you decide to trust Alice to

The Web of Trust

by Kristian Fiskerstrand 18

sign other keys or not is a personal matter, and other's won't see it. Hence
if Alice trust Daniel to sign keys, you still won't trust Fredrik.

So, why does this matter? Well, since one of the goals is verifying that
emails come from the person that it claim it come from, you need to be
able to see if the key belong to the actual person.

Keyservers

In order to make exchanging public keys easier, a series of key servers for
OpenPGP have been configured around the world. These keyservers are
storing massive amounts of keys, and synchronizes between each other.
Instead of having to send your key to everyone already having your
OpenPGP Public key if it changes, e.g. because someone new signs it, you
upload it to a keyserver and people refreshes your key from there from
time to time. At the time of writing the keyservers hosted by myself both
holds about two and a half million keys.

Different keyservers can be found at http://sks-keyservers.net , and the
round-robin DNS x-hkp://pool.sks-keyservers.net can be used to always
find an available keyserver. In this context, HKP is an abbreviation for
Horowitz Keyserver Protocol. As the protocol is not officially recognized by
IETF it is often prefixed “x-”, but hkp:// refers to the same protocol. HKP
works on top of the standard web protocol, Hypertext transfer protocol
(HTTP), defaulting to use port 11371 instead of 80, so x-hkp://pool.sks-
keyservers.net is the same as specifying http://pool.sks-
keyservers.net:11371

Using Certificate Authorities to extend the WoT

As maintaining the Web of Trust can require a great deal of work, there are
situations where one wants to assign trust to a Certificate Authority (CA).
This is done by default in other crypt systems, such as S/MIME and the
HTTPS (SSL).

Using OpenPGP the choice whether or not to trust a certificate authority is
given to the user. This gives OpenPGP an advantage over other systems
that depends on CAs by default. The most known CAs today are Verisign
and Thawte (a VeriSign company) but there are also attempts on
communities such as cacert.org to be a generic certificate authority.

In a corporate setting it can be valuable to have a company signing key
that is used when a trusted member of the company has verified a peer's
credentials. This key can then be trusted by all employees to extend their
Web of Trust, instead of all the employees having to check the credentials
on their own.

The Web of Trust

19 Sending emails – the safe way

A balanced cryptosystem
A cryptosystem is only as strong as its weakest component, which brings
up an interesting point regarding what would constitute a balanced
cryptosystem. The basis is generally that you will want a minimum of
security, generally defined with the basis in equivalence of symmetric key
size.

Symmetric key
size

Asymmetric Key
Length

Hash
size

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

Say you want a minimum security of 128 bits. This would mean that the
asymmetric keys would have to be at least 3072 bits, people would be
required to use at least 128 bit symmetric encryption (e.g AES) and the
hash used has to be at least 256 bits (e.g SHA256).

Of course, there is a limit to how far it is profitable to talk about the
strength of the cryptosystem, as the technical aspects of the security goes
over to physical attacks and/or monitoring as well as social engineering
techniques at one point. Human behaviour often understate the threat in
order to satisfy their own safety needs, often falsely. One example would
be purchasing an expensive pick-proof lock at your home door, and thereby
feeling comfortable that you have made the home safer for your family and
yourself. However, the windows are still just as easy to break through.

Security is, as a result often merely an illusion, an illusion sometimes made
even worse when gullibility, naivety, or ignorance come into play. Albert
Einstein is quoted as saying: "Only two things are infinite, the universe and
human stupidity, and I'm not sure about the former."

A balanced cryptosystem

by Kristian Fiskerstrand 20

GNU Privacy Guard
Open Source - The GNU Project
The GNU Project was launched in 1984 to develop a complete UNIX-like
operating system which is free software: the GNU system. Variants of the
GNU operating system, which use the kernel called Linux, are now widely
used; though these systems are often referred to as “Linux”, they are more
accurately called GNU/Linux systems.

One can read more about the GNU project at http://gnu.org

What is GNU Privacy Guard?
GnuPG is the GNU project's complete and free implementation of the
OpenPGP standard that got introduced earlier in this book. GnuPG is Free
Software (meaning that it respects your freedom). It can be freely used,
modified and distributed under the terms of the GNU General Public License
.

Version 1.0.0 was released on September 7th, 1999. At the time of writing
the current stable version is 1.4.7 , with version 2.0.4 being available for
the GNU/Linux operating system. With regards to OpenPGP use, all that is
needed is included in the 1.4 series, with version 2.0 adding extended
support for S/MIME and features such as the gpg-agent.

Installing GnuPG
GnuPG can be obtained from http://www.gnupg.org . It already comes
installed for most flavors or GNU/Linux, if not it can be installed using the
package manager for your distribution.

People using Microsoft's Windows, however, will have to install it. Pre-
compiled binaries can be downloaded from the project's website. The
installation procedure has improved magnificently over the past years,
introducing a native windows installer which has helped getting a
somewhat more wide-spread usage.

Once downloaded you have the file gnupg-w32cli-X.Y.Z.exe. To start the
installation simply double click the file, select the language, and press
“next” until it completes.

GNU Privacy Guard

21 Sending emails – the safe way

Generating your first key
First a disclaimer: Here I'm going to go through the manual steps to
generate your first key set in GnuPG, using the command-line interface.
This is an operation that first-time wizards in different graphical front-ends
will do for you, but it can give some insight into the workings of GnuPG for
those interested.

But for those that like to do things manually, in order to have full flexibility,
here we go: First you would open a command prompt. For windows one
would start by pressing the start button then press run followed by writing
“cmd”. This will bring up a box that look like:

GNU Privacy Guard

by Kristian Fiskerstrand 22

This is the command line, some basic commands are:

cd – change directory, e.g. “cd dir1” to go into a folder named dir1 and “cd
..” to go back one level.

Now you want to navigate to where you installed GnuPG. In my case that is
cd “\Program Files\GNU\GnuPG”

Now you can execute the gpg.exe binary file using the command “gpg”.

The gpg binary contain everything you need to do. We want to generate a
new set of keys. To do that we use “gpg --gen-key”

The default option here is a DSA and ElGamal keyset, which is okay for
most users. Be aware that if you want to use a digest algorithm such as
SHA256 you should select RSA signing key here. If you have such a need,
however, you can probably manage from this point onwards without the
help of this tutorial.

GNU Privacy Guard

23 Sending emails – the safe way

Pressing the Enter key here use the default option, and bring you to a
screen where you can select the size, just press enter here again to use the
default, a 2048 bit encryption key and a 1024bit signing key.

Press enter one more time and you set the key to never expire, and
confirm the action by pressing “y”.

You will now be asked to write in your information, your full name and your
email address.

Once correct press “o” to proceed.

You will then be asked to insert a passphrase that is used to protect your
private key. Choose one at your will that you will remember.

The next step take some time, but you don't have to do anything yourself.
This is the actual key generation and require some noise in the system, so

GNU Privacy Guard

by Kristian Fiskerstrand 24

contrary to other tasks you might be familiar with, the more you use the
computer for the faster it goes

Generating a revocation certificate
The next thing you want to do is generating a revocation certificate. A
revocation certificate is used in the event that you loose your private key or
the passphrase associated with it. Importing a revocation certificate into
the public key (and subsequently distributing the modified version) will
invalidate the key for further use, id est others won't be able to verify
messages digitally signed using it, or encrypt messages to it.

To generate a revocation certificate use the command “gpg –gen-revoke
key-id”

The key id- as well as other information abut the key you got after the key
was generated. In my case the key is 6B2AFB8 and I use "gpg --gen-
revoke 6B2AFB8" to generate the revocation certificate.

This produce the revocation certificate, in this case it look like

GNU Privacy Guard

25 Sending emails – the safe way

You now have your own keyset that you can use to communicate securely
with others. Store the revocation certificate someplace safe, and even print
a hard copy of it.

Congratulations you are now able to communicate safely.

Backing up the keyrings
On NT based Windows systems the two key rings, one containing the
private keys and the other the public keys can be found at
%appdata%\gnu\gnupg . In windows 9x based systems, you will most
probably find the files pubring.gpg , secring.gpg and trustdb.gpg in the
folder that contains the gpg executable. As for Unix-like systems the
natural place to look would be $HOME/.gnupg .

No matter which operating system you use you want to back up the
appropriate files.

Verifying a key
In order to verify a key you will have to establish contact to the key holder
in a trusted communication channel. As mentioned before this can be
talking to a friend on the phone, or it can be meeting up with someone in
person, that you recognize either by appearance or verify using already
issued authentication credentials such as a driver's license.

What you want to do is to compare the User ID of the key, as well as the
master key ID and the primary key fingerprint. Let me show you how you

GNU Privacy Guard

by Kristian Fiskerstrand 26

can get this information using GnuPG. Let us use my own key as an
example, with key ID 0x6b0B9508.

By issuing the commandline command: “gpg --fingerprint 0x6b0b9508”
(two dashes). I get the following result:

[kristianf@kfc002 ~]$ gpg --fingerprint 0x6b0b9508

pub 4096R/6B0B9508 2005-02-21

 Key fingerprint = 65F1 73BE C045 0DA0 7A58 6197 16E0 CF8D 6B0B 9508

uid Kristian Fiskerstrand <kristian.fiskerstrand@kfwebs.net>

uid Kristian Fiskerstrand <kf@kfwebs.net>

uid [jpeg image of size 5187]

sub 4096g/FD83BAC5 2006-11-01 [expires: 2007-12-29]

Lets break this information down a bit. 4096R indicates a 4096 bit RSA
signing key, the key ID that we looked for and got results for was
6B0B9508. We want to make a note of this key id, as well as the primary
key fingerprint we got here, 65F1 73BE C045 0DA0 7A58 6197 16E0 CF8D
6B0B 9508. The key fingerprint is a checksum (using the sha1 digest
algorithm) of the public key. We use this to confirm that the key has not
been altered in any way from what it was intended.

4096g indicates a 4096 bit ElGamal Encryption Key. There are in fact three
of these for my key, as I tend to generate a new one each year, but as the
two former are expired, and this one is the last one to be generated it is
the only one to show in this window.

There are three different “uid”, or User ID fields for my key. The two first
are different email addresses, the third is a photo ID, a JPEG stored with
the public key in order to do facial recognition of myself.

How to sign a key using GnuPG

Although different graphical user interfaces (GUI) will allow give you a way
to sign keys, it happens that you want to do so using gnupg directly from
the command line.

If you were to sign my key you would issue the command “gpg –edit-key
0x6b0b9508” (again double dashes is used). You would then write “sign”
and press enter. This should give you a question whether you want to sign
all user id's which you can answer yes to,if that is, in fact what you want to
do, if it isn't you can select which user IDs you want to sign by using “uid
1-3” (as I have three different user ID's). The selected user ids will be
selected with an asterisk (*). Follow the steps and exit using “save”.

GNU Privacy Guard

27 Sending emails – the safe way

How to assign trust to a key using GnuPG

As discussed above, trust is vital to how to interpret your web of trust. To
construct an example, let us say I am a good friend of yours that you trust
to verify other people's public keys. Hence, every key that is signed by my
key 0x6b0B9508 is to be trusted by yourself.

After you have signed my key using the information in the section above,
you can assign my key a full trust. Let us get back in the edit key prompt
by again issuing “gpg –edit-key 0x6b0B9508” (again, double dashes are
used). But this time let us write “trust” instead of “sign”.

This brings up several choices, of which the important ones to us are:

Marginal Trust

By default three marginally trusted keys are required to have signed
a key before it is considered valid / trusted by yourself.

Full Trust

This is the option we want to use in our example, as you fully trust
myself to verify other keys. Full trust indicates that all keys signed
by this person are also to be considered trusted by yourself.

Ultimate Trust

Ultimate trust should only be used on your own keys.

Configuring GnuPG
GnuPG offers a great deal of configuration options for those wanting to
customize the usage. The default settings are sufficient for most but let us
look at some possible tweaks nevertheless. The gnupg configuration file is
called gpg.conf and if it exist it is found in the same data dir as the key files
are stored (ref. the chapter on backing up gnupg). Don't be alarmed if you
do not find this file, however, as it is not generated by default. You will
simply have to create it.

The natural configuration directive to start looking at is the default-key
option . Simply adding a line to the file that, in my case looks like:

default-key 6B0B9508

makes this the default key to use for signatures when another isn't
specified.

GNU Privacy Guard

by Kristian Fiskerstrand 28

Organization in a grander scale
As a business or an organization increase in size it gets cumbersome for
each member to verify that the public keys really belongs to the different
individuals. At this point it is beneficial to introduce a Certificate Authority.
This can be the manager of a political team that signs each of the team
members keys, or a designated task within the business unit that is to be
trusted to properly verify keys.

For a business it would also make sense to have a different signing key for
customers and employees. But at that point one adds the keys more
importance than just that the user is who he or she claims to be.

At this point, let me emphasizes on the need to revoke signatures of keys
whenever an employee leaves the firm, hence invalidate the trust it for
later verification.

Organization in a grander scale

29 Sending emails – the safe way

Configuring your email client
Mozilla Thunderbird and Suite
Mozilla Thunderbird is the stand-alone, cross-platform, email client
provided by The Mozilla Foundation. It use XUL for its interface and mbox
for storing files on disk. Mozilla Thunderbird can be downloaded from.
http://www.mozilla.com . The primary focus over the Mozilla suite is being
small but extensible, and the extensibility support is used by Enigmail.

Enigmail is an extension to Mozilla that add support for OpenPGP as a
front-end for the GNU Privacy Guard. Enigmail can be installed using the
addon interface in Mozilla Thunderbird. The extension file can be
downloaded at http://enigmail.mozdev.org . Full installation instructions
are available at http://enigmail.mozdev.org/gpgconf.html .

First time use

Starting to use Enigmail is very easy, assuming you have gpg installed
according to instructions. Enigmail include an own key management
feature, and a first-time wizard is in the making. To start using Enigmail
you will first have to generate a key. This can be done using the following
procedure. Enigmail>OpenPGP Key Management>Generate>New key pair.

You will be presented with the key generation window. Here you can select
which account you want it assigned to, and if you want it to be enabled as
soon as the key has been generated. We will have a look at the account
configuration afterwards. You're name and email address will be gathered
from the account specified. You will and should specify a passphrase for the
private key.

I suggest setting the key to not expire. As you get more accustomed to

Configuring your email client

by Kristian Fiskerstrand 30

GPG you can change the expiration date of the subkey used for encryption
only, while the primary key doesn't expire. The default setting is a 2048 bit
key, which will produce a 1024 bit DSA signing key and a 2048 bit ElGamal
encryption key. These are sane settings for most common usage.

Account settings

You can access the account settings by right-clicking on an account and
select properties. After installing Enigmail you will see an OpenPGP Security
entry. I prefer to sign all messages by default and also to encrypt all
messages by default. Ordinarily this will pop up a dialog every time you try
to send an email to anybody you don't have a public key for, but we'll
tweak that in the Engimail configurations afterwards.

Enigmail settings

Configuring your email client

31 Sending emails – the safe way

From the previous step we can press advanced to get the Enigmail settings.
These can also be found in the Enigmail menu > preferences. In the Key
selection tab I prefer to have never show dialog enabled. In addition to the
changes in the account settings this will automatically encrypt to everybody
you have a public key for, if not, send the email unencrypted without
warning.

Retrieving keys

You should now be ready to send signed messages, however to encrypt to
anybody else, or to verify a signature you need the other persons public
key. If the other user has first sent an email, and the key is on a key server
this is a rather simple task, involving clicking the pen icon and accepting
that it download a new key. If you on the other hand don't have an email
message available you would use the Key Management Window. This is also
a very simple task involving opening the key management dialog, selecting
key server and search for key. Then you can type in the name or email
address of the person you want to retrieve the key form and in most cases
it will exist

Signing keys

Key signing is vital to OpenPGP. As mentioned earlier in this book, you sign
a key to authenticate that you know that the key belong to the person it
claim to belong to.

Configuring your email client

by Kristian Fiskerstrand 32

The Enigmail key management window provide for an easy way to sign
keys; You simply right-click on a key listed and select sign key. You will be
met by a dialog allowing you to select which key to use to sign, how
carefully you have authenticated the key, and a check box where you can
mark the signature as non-exportable or local. This implies that the key
won't be sent to a keyserver if you send a key.

Sending and refreshing keys

For others to see that you have signed a key you will need to distribute the
altered public key some way (with your signature on it). The most common
way to do so is by using a keyserver. To upload a key to a keyserver you
merely right click on the key and select upload keys to keyserver.

To refresh a key you will do the same, right clicking and selecting refresh
key from keyserver. Refreshing implies downloading the key again so that
you can get updated related to the key. New signatures, new subkeys, or in
the case the key has been revoked you will be notified. I therefore
recommend that you do this once in a while.

Configuring your email client

33 Sending emails – the safe way

OS X's Mail.app
There is a distribution of GnuPG for the Mac platform, using the native
installer available at http://macgpg.sourceforge.net.

After MacGPG has been installed, generate your first OpenPGP key. The
procedure to do this is found in the chapter GNU Privacy Guard of this
book. To get to the console open Terminal in the Utilities folder of
Applications.

You can now quit Mail.app if you have it open, and execute the installer of
GPGMail.

Configuring your email client

by Kristian Fiskerstrand 34

After it has completed, restart Mail.app and you should find a couple new
windows in the configuration section under the PGP tab.

Configuring your email client

35 Sending emails – the safe way

The first window you will be presented with is the Keys tab. If you have
multiple secret keys you can select which one to use by default here, or if
you want to use one key per account. If you have followed this book and
started from scratch you will have only one secret key, so the default here
should be ok. So time to move to the second tab, Composing.

This tab has quite a lot more options to select from.

A message signed can still be read by others, even though they don't have
compatible systems to verify the signature. Therefore I recommend signing
all outgoing messages, to enable people that have compatible systems to
have added security.

Encryption requires the other party's public keys. The combination of by
default, encrypt messages and encrypt when all keys are available is a
good one. A compose window is shown below, here you see both PGP
signed and encrypted. As soon as you enter an email address that doesn't
have a corresponding user id in a public key, it will be deselected by
default, and if you want to encrypt the message you will have to select the
keys manually.

Configuring your email client

by Kristian Fiskerstrand 36

This email is ready to be sent, both signed and encrypted. So go ahead,
press send.

Configuring your email client

37 Sending emails – the safe way

Using GPG Relay for mail clients in Windows
GPG Relay is an Open Source transparent proxy that operate between your
email client and your email server. This mean that you can use OpenPGP
even though your email client doesn't have support for it directly. The
project website is http://sites.inka.de/tesla/gpgrelay.html

Before installing GPGRelay you should have the GNU Privacy Guard
installed, information can be found in the chapter GNU Privacy Guard.

The GPG Relay is a simple windows installation file, and is just to double
click to install. After installation you will be presented the option to run
GPGRelay. If you don't have a keypair and/or keyring installed from before,
you can let GPG-Relay create one for you. If none is detected you will be
presented with the following window

You can download the installation file from GPGRelay's website. If you want
GPGRelay to handle Secure Socket Layer (SSL), you will also download
http://sites.inka.de/tesla/download/OpenSSL-0.9.7e.dll.zip . This is an
ordinary zip-file, that can be unzipped e.g. using WinZip or the un-archiver
in Windows. The unarchived files can be copied into the directory where
you chose to install GPGRelay.

Generating your first keypair

Configuring your email client

by Kristian Fiskerstrand 38

First you just fill in your name and email address, then you press next and
is presented with the following window

Configuring your email client

39 Sending emails – the safe way

Personally I suggest using a 4096bit RSA signing key, and a 4096
encryption key that either is ElGamal or RSA. Then you just press ok.
Note: this probably take some time. In the next two dialogs I set the
expiration time to never expire, and use a pass phrase for the key. Then
you just wait until it says it is finished generating the key.

Configuring relays

Once completed you are presented with the "relays" window. To understand
this, you have to understand the theory of a proxy.

You configure GPGRelay as a proxy, altering the traffic between the email
client and the email server.

Consider the following example: your email provider use the domain name
email.domain.com for both outgoing and incoming traffic. Outgoing (SMTP)
port is 25. Incoming (POP3) port is 110. You would in this case add two
relays. To do this, press "add". for the POP you can use name: mypop. and
the local port 3110 (you can use the value you want). You would then do
the same for SMTP, just alter it to use name mysmtp, local port 3025 and
remote port 25.

Configuring your email client

by Kristian Fiskerstrand 40

Configuring your email client

41 Sending emails – the safe way

Configuring the keyrules

The keyrules window look like

You will notice the key you just generated in the default rule. I suggest

Configuring your email client

by Kristian Fiskerstrand 42

editing this rule to always sign the messages. To do this; click edit on the
rule, and change "pass-through" to "sign"

The next thing I did was to edit the rule "PGP/MIME always encrypt". I
changed this to encrypt & sign, and hence also changed the name to reflect
this change. After that I imported the key 0x6b9b0508. This is my own key,
and it can be found at http://www.kfwebs.net/pgp/. This can be found by
searching a public keyserver. I used http://keys.kfwebs.net:11371, copied
the public-key block and used the import key from clipboard feature

And now I can send secure messages between this computer and my
primary computer. More information on configuring GPGRelay can be found
at http://sites.inka.de/tesla/gpgrelay_setup.html.

Configuring your email client

43 Sending emails – the safe way

Evolution
Evolution6 is an integrated solution for email, contacts and calendar. It was
originally developed by Novell but is now an Open Source project. It is first
and foremost for the GNOME7 desktop system, but it work well for KDE8 as
well, of which the screenshots of this article is based on.

Evolution include several features, including SpamAssassin9 for junk
filtering. I'll focus most on the feature they call "Security and encryption".
Evolution include support for both S/MIME and OpenPGP, we will however
only focus on the OpenPGP support.

Evolution use GNU Privacy Guard10 for its OpenPGP support. If you have
this configured already it will start using Evolution with it straight away, as
it automatically verifies signatures and decrypts messages. If you don't
have GnuPG configured, please read the chapter GNU Privacy Guard before
proceeding.

After that, the direct support makes it very easy to use. Whenever you get
a message signed using OpenPGP you will get a window looking something
like

The green line clearly indicates that a valid signature has been found. This
email, however has not been encrypted. A message that has been
encrypted, but not signed will show up as

And a message that has been both digitally signed and encrypted will show
up as

That should be some of the aspects for receiving emails, but what about
sending them. First lets have a look at the security tab in preferences

6 http://www.gnome.org/projects/evolution/
7 http://www.gnome.org/
8 http://www.kde.org/
9 http://www.spamassassin.org
10http://www.gnupg.org

Configuring your email client

by Kristian Fiskerstrand 44

Let us insert your own OpenPGP Key ID as the default key to use for the
accounts, and make sure the checkbox “always sign outgoing messages
when using this account” is checked, as well as “always encrypt to myself
when sending encrypted mail”, in order for you to be able to read the
message in the sent messages folder. Also, let us check “always trust keys
in my keyring when encrypting”, but make sure not to confuse this with
trusting digital signatures.

Now, when you are composing a message you should find the dropdown
menu looking like

Key management

Although Entourage has support for OpenPGP it does not have a key
management utility. If you're not comfortable using the command line for
this task, as described in GNU Privacy Guard, there are some stand-alone
key-management tools that can be of interest. One of which is kgpg, which
generally follows the desktop environment KDE.

Small drawback

One thing I encountered when testing Evolution is that it (confirmed with at
least versions 2.2.3 and 2.4.2.1) require the encrypted data to be RFC
1847 Encapsulated. It does not support the other method of both digitally
signing and encrypting defined in RFC 3156. (RFC 1847 encapsulation is
described in chapter 6.1, the combined method is described in chapter 6.2
for those interested).

The ramifications of this is that although Evolution will decrypt an
OpenPGP/MIME message sent this way, it will not show the box for a valid
signature. Other email clients, such as Mozilla Thunderbird with Enigmail as
an extension to handle the security use the combined method by default

Configuring your email client

45 Sending emails – the safe way

when sending a message using OpenPGP/MIME. It will be able to properly
verify both methods. The workaround to this quirk is to use Inline
messages instead of OpenPGP/MIME.

Configuring your email client

	Introduction
	Understanding digital signatures
	What is a digital signature
	How can a digital signature help you?

	Encryption
	History of encryption
	Industrial espionage
	The Echelon surveillance system

	Possible legal requirements
	HIPAA
	Gramm-Leach-Bliley Act

	OpenPGP
	Introduction to OpenPGP
	Implementations
	Public Key Infrastructure
	Hybrid system
	Asymmetrical key types
	RSA
	DSA
	ElGamal

	Digest Algorithms / hashes
	SHA-1
	SHA-2 family of hashes
	RIPEMD160

	Symmetrical key types
	Advanced Encryption Standard Process
	AES
	Twofish
	Blowfish
	IDEA

	The Web of Trust
	The social problem
	Key Validity / Trust
	Keyservers
	Using Certificate Authorities to extend the WoT

	A balanced cryptosystem
	GNU Privacy Guard
	Open Source - The GNU Project
	What is GNU Privacy Guard?
	Installing GnuPG
	Generating your first key
	Generating a revocation certificate
	Backing up the keyrings
	Verifying a key
	How to sign a key using GnuPG
	How to assign trust to a key using GnuPG
	Marginal Trust
	Full Trust
	Ultimate Trust

	Configuring GnuPG

	Organization in a grander scale
	Configuring your email client
	Mozilla Thunderbird and Suite
	First time use
	Account settings
	Enigmail settings
	Retrieving keys
	Signing keys
	Sending and refreshing keys

	OS X's Mail.app
	Using GPG Relay for mail clients in Windows
	Generating your first keypair
	Configuring relays
	Configuring the keyrules

	Evolution
	Key management
	Small drawback

