

Contents

CHAPTER 1

Introduction

CHAPTER 2

Understanding digital signatures
2.1 What is a digital signature . 3
2.2 How can a digital signature help you? 4

CHAPTER 3

Encryption
3.1 History of encryption . 6
3.2 Industrial espionage . 7
3.3 The Echelon surveillance system 8
3.4 Possible legal requirements . 8

3.4.1 HIPAA . 8
3.4.2 Gramm-Leach-Bliley Act 9

CHAPTER 4

OpenPGP
4.1 Introduction to OpenPGP . 10

ii

CONTENTS iii

4.2 Implementations . 10
4.3 Public Key Infrastructure . 11
4.4 Hybrid system . 11
4.5 Asymmetrical key types . 11

4.5.1 RSA . 12
4.5.2 DSA . 12
4.5.3 ElGamal . 13

4.6 Digest Algorithms (hashes) . 13
4.6.1 SHA-1 . 13
4.6.2 SHA-2 family of hashes 14
4.6.3 RIPEMD160 . 14

4.7 Symmetrical key types . 15
4.7.1 Advanced Encryption Standard Process 15
4.7.2 AES . 15
4.7.3 Twofish . 16
4.7.4 Blowfish . 16
4.7.5 IDEA . 16

CHAPTER 5

The Web of Trust
5.1 The social problem . 18
5.2 Key Validity / Trust . 19
5.3 Keyservers . 20
5.4 Using Certificate Authorities to extend the WoT 21

CHAPTER 6

A balanced cryptosystem

CHAPTER 7

GNU Privacy Guard
7.1 Open Source – The GNU Project 24
7.2 What is GNU Privacy Guard? 24

iv CONTENTS

7.3 Installing GnuPG . 25
7.4 Generating your first key . 26
7.5 Generating a revocation certificate 28
7.6 Backing up the keyrings . 29
7.7 Verifying a key . 30
7.8 How to sign a key using GnuPG 31
7.9 How to assign trust to a key using GnuPG 31
7.10 Configuring GnuPG . 32

CHAPTER 8

Organization in a grander scale

CHAPTER 9

Configuring your email client
9.1 Mozilla Thunderbird and Suite 34

9.1.1 First time use . 34
9.1.2 Account settings . 35
9.1.3 Enigmail settings . 36
9.1.4 Retrieving keys . 37
9.1.5 Signing keys . 37
9.1.6 Sending and refreshing keys 38

9.2 OS X’s Mail.app . 38
9.3 Using GPG Relay for mail clients in Windows 42
9.4 Evolution . 43

9.4.1 Small drawback . 43

Chapter 1

Introduction

Talking to an acquaintance on the phone, it is generally easy to know whether
you’re talking to the one you expected. This is however not necessarily as
easy when sending an email. As a result the credibility of email messages
in general is lower and implicitly many would rather talk to someone one
the phone over sending an email, despite email’s advantages for efficient
communication. And there are many advantages: Email is an asymmetrical
form of communication which doesn’t require the other party to be present at
the exact time you yourself have the time for it. It gives both the sender and
the recipient time to properly formulate the communique in an unambiguous
way, as well as do the necessary research for the information contained to be
as accurate as possible. Our focus here will however be on another aspect:
Emails enables the possibility of secure communication. There is an old
proverb stating: “There is no use closing the door, once the horse has left
the barn”. Sadly many ignore any security considerations, often on a basis
of claiming it too difficult of a concept to grasp. This excuse is often used
until, and sometimes even after, the issue is overdue escalation. It is about
time for this to change. Since you are already reading this book I hope you
don’t do so because you just had a security breach, or if you do; I urge you
to inform others of your reasoning in order to help them be pro-active in
protecting their privacy and their data and hope that the results in your
own case did not lead to any permanent ramifications. Because security is
usually considered a secondary, or even tertian need, it increases the difficulty
of educating people. We do not generally sit down in front of our computer
wanting to manage our security. Rather we want to send emails, browse
web pages, download software, and we want security in place to protect

1

2 CHAPTER 1. INTRODUCTION

us while we do these things. A paper written in 1998 named “Usability of
Security: A Case Study” by Alma Whitte and J.D. Tygar[9], where they
call this element the unmotivated user property discusses this. It follows
up by defining the abstraction property which states “Computer security
management often involves security policies, which are systems of abstract
rules for deciding whether to grant accesses to resources. The creation and
management of such rules is an activity that programmers take for granted,
but which may be alien and unintuitive to many members of the wider user
population.”

Combining the effect of the abstraction property and the unmotivated
user property can give scary results. The general user will not understand
the basis for the policies put forth in security applications without education,
but at the same time, the general user is not to be expected to be interested
in learning about security.

This book is logically divided into two. A great deal of the content is a
generic introduction to digital signatures and encryption on a general basis.
The rest will, however be quite practical. Hopefully both parts are useful to
you.

Bruce Schneier is often quoted with an expression stating: “Security is
a process, not a product”. Hopefully this book can help you gaining both
interest and knowledge into the process of securing your email communication
as well as your data, and help you increase the credibility of emails, by sending
emails the safe way.

Chapter 2

Understanding digital signatures

2.1 What is a digital signature

A digital signature is a part of the email that, when properly implemented, is
mostly invisible to the user. It does however have some unique features that
makes it very valuable to add credibility for those seeking it. As opposed to an
analog signature of a standard letter, digital signatures for our purposes ac-
complishes two goals. The first use is to verify the sender (authentication).
This is also done by an analogue signature, if you know the persons handwrit-
ing well enough and trust that the signature is not a copy. However, a digital
signature also verifies that the content has not been tampered with (data
integrity), because, opposed to analogue signatures, the digital signature is
created based on the content it signs, using a digest algorithm as discussed
later in this book. If anyone were to change the content of a digitally signed
document, the signature would be invalidated.

Historically both of these functions were performed by the use of seals.
In a time with limited resources and knowledge with regards to the art of
deception it often served the purpose well. Today’s attackers are however
slightly more sophisticated. The thing is, an ordinary signature today means
little or nothing at all. People change the handwriting over time, and how
the signature gets depends on the context it is singed in; the available space
to sign on, if it is rushed or not, what kind of pen is used et cetera. But
probably the greatest problem is the recipient’s ability to properly verify that
the signature actually comes from the intended sender. Digital signatures are
far superior to analogue signatures in each aspect, and this gives email an

3

4 CHAPTER 2. UNDERSTANDING DIGITAL SIGNATURES

advantage over both ordinary letters and faxes, if used properly, which you
hopefully will be guided to by reading this book.

2.2 How can a digital signature help you?

If you run any kind of business you want to be able to know that the sender
of the email is the one that first ordered your services. For instance a web
hosting company receiving an email asking for the password of one of the
domain hosting services to be reset, or the file permissions assigned to a
different user. You will want proof that the sender is whom he claims to be,
and if the user submitted a public key e.g. when paying for the package, this
can easily be handled.

Another good practical example where the use of digital signatures vital
is signing of software packages or other files that are to be distributed, ex-
empli gratia over the Internet. Presuming that you have gotten the public
key through a trusted source, or when downloading the last version of the
program, you can then use the signature to verify that the file has not been
altered. A real world example where this would have helped is with regards
to the Internet Relay Chat (IRC) client BitchX, that came under attack us-
ing Domain Name Server (DNS) poisoning. Without going into too many
technical details, which would bore most, in summary people downloaded
a copy of it that contained spyware, because the download got directed to
another server than the official one.

Two-hundred and fifty users of the Swedish bank Nordea got their bank
accounts tapped after first having been infected with a modified version of
the trojan horse “haxdoor” resulting in a loss for the bank of about $1.2
Million USD.

Trojan Horse:
The term trojan horse was coined as a result of a historic event
between the Greek and Trojans in the city of Troy. The Greek
offered a wooden horse as a gift to the Trojans, allowing the greeks
hidden in the horse access behind the walls of the city.

The analogy of this is wildly used in computer terminology today,
representing a virus or worm opens a backdoor to the system for
malicious individuals to connect, and gain control of, the system.

Chapter 3

Encryption

Data/Content that can be read and understood without any special measures
is called plaintext, or cleartext. When you go through the encryption process
you get ciphertext as output, data that can appear garbled and has to be
decrypted before it once again can be read as cleartext. Cryptography is the
science of using mathematics to encrypt and decrypt data. It enables you
to store sensitive information or transmit it across insecure channels (like
the Internet) so that it cannot be read by anyone except the intended re-
cipients. While cryptography is the science of securing data, cryptanalysis
is the science of analysing and breaking secure communication. Classical
cryptanalysis involves a combination of analytical reasoning, application of
mathematical tools, pattern finding, patience, determination and luck. Cryp-
tology covers both cryptography and cryptanalysis. Lets start off by a simple
question: Do you write down sensitive data on the back of a postcard? If
the answer is “no” and I hope it is, why not? Because you know, that anyone
dealing with the mail under ways; postal workers, the delivery guy, or anyone
peaking in your mailbox, can read it. The same goes for e-mail, except then
it’s done electronically in a matter of seconds. Why do you put mail in an
envelope? Breaking a sealed envelope is a felony in most countries, and as
such it adds a level of judicial protection to the content in addition to making
it more difficult to read. The solution for putting emails in an envelope is
even harder to break through, but not necessarily more difficult to apply; it
is called encryption.

In Norway the need for encryption escalated into a political fiasco in 2006.
The prime minister’s office has the website smk.dep.no and as such email
addresses of the employees ends with @smk.dep.no . In a quick glimpse a PR

5

6 CHAPTER 3. ENCRYPTION

worker for the Norwegian labor party sent an email containing key points for
a political debate later that day to @smk.no , hence leaving out the ”dep”
part. This is of course a completely different domain name, and hence it
ended up in the inbox (catch-all enabled to get <everything>@smk.no) of
a Norwegian corporation. The one receiving the email, supporting another
political party than the labor party quickly forwarded it to the party he
supported, and the labor party got questioned about the content in a fairly
humiliating context on a live TV debate later the same day. The end of this
story was that the government purchased the smk.no domain name for 16,000
USD, a relatively small sum compared to other popular domain names, but
still the grandest one known for the .no top level domain.

But it is important to remember that this can happen to others as well,
and if only the parties involved used encryption it could all have been avoided
as the recipient would have been unable to read the content of the email.

What about communication between a lawyer and a client? Or the com-
munication between the business leader and consultant? The norwegian firm
Synovate performed a survey amongst Norwegian business leaders, lawyers
and consultants. The results were not surprising, but still dissapointing. 30%
of the participants admits to sending confidential information through email,
while at the same time 50% states that it is not safe to send confidential
information using email as means.

3.1 History of encryption

The first recorded person to use secure communication was Julius Caesar.
He used a shift cipher a variant of a substitution cipher, with a key of three.
This means that an A get turned into a D, a B get turned into a E et cetera.

This method has forever since been referred to as the caesar’s cipher and
it works like this: Write down the alphabet , then write it again, but this
time move each character a given number of positions, in this case three.

Plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Cipher D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Now, if I want to write SECRET in plaintext it would read VHFUHW as
ciphertext. It is unknown how effective the Caesar cipher was at the time, but
it is likely to have been reasonably secure, not least because few of Caesar’s

3.2. INDUSTRIAL ESPIONAGE 7

enemies would have been literate, let alone able to consider cryptanalysis,
that is the art of deciphering an enciphered message. Today, however, meth-
ods such as the Caesar’s cipher are considered weak cryptography. Although
it might be enough to protect your data from classmates in kindergarten, it
won’t protect it from any government or against industrial espionage. The
focus throughout this book is therefore solely on strong cryptography. But
as with the case of the Caesar’s cipher, what is strong today, might not
be strong tomorrow, as computer power increases and mathematics evolve.
Thus one should not claim something to be impenetrable. A conservative
view and carefully following the development will get you much further, and
the strong encryption utilized by OpenPGP is the strongest available today.

3.2 Industrial espionage

Corporations goes out of their way to protect its proprietary interest. Yet
many doesn’t focus on securing the technical aspect of the day-to-day oper-
ations, mostly due to the lack of knowledge on the subject.

There are known examples where a company with armed guards at the
front gate and thick steel doors placed an unprotected wireless access point
in the window of the structure. As a result of this, the same data that was
protected by armed guards was available to anyone in a car across the street
with a wireless-enabled laptop.

There are several examples throughout the history of how important en-
suring privacy can be for the strategical outcome. Look at the stock prices
of some companies that are about to be merged, and how strongly trading
regulations protect insider information.

But the clearest example is probably communication during wartime. It
was, for instance of vital importance for the outcome of World War II that the
German Enigma cipher was cryptanalyzed (broken). Today Bletchley Park
outside London is a museum that can be visited as a reminder of this. There
are many fascinating documentaries about Alan Turing and The Bombes
that are considered the predecessors of today’s computers.

However, as most doesn’t want to associate its strategies with those of war
let us look at a specific business related example. But first a little information
about the Echelon system to get some background information.

8 CHAPTER 3. ENCRYPTION

3.3 The Echelon surveillance system

On 5 July 2000 the European Parliament decided to set up a temporary
committee on the ECHELON system.[7]. The Echelon system is probably
the greatest surveillance effort ever established. The US National Security
Agency (NSA) has created a global spy system, which captures and analy-
ses virtually every phone call, fax, email and telex message sent anywhere
in the world. ECHELON is controlled by the NSA and is operated in con-
junction with the Government Communications Head Quarters (GCHQ) of
England, the Communications Security Establishment (CSE) of Canada, the
Australian Defense Security Directorate (DSD), and the General Communi-
cations Security Bureau (GCSB) of New Zealand. These organizations are
bound together under a secret 1948 agreement, UKUSA, whose terms and
text remain under wraps even today.

The final report that was published show a list of examples in its chapter
10.7 (page 103), of which I want to focus on one of them. This is the Airbus
versus Boeing case of 1994. The American National Security Agency used its
network to intercept the communication between Airbus and a client both
Boeing and Airbus was negotiating with in Saudi Arabia. They did this
by intercepting faxes and telephone calls and forwarded the information to
Boeing and McDonnell–Douglas. The end result being that the Americans
won the 6 billion US dollars contract.

3.4 Possible legal requirements

3.4.1 HIPAA

The American Health Insurance Portability and Accountability Act is a set
of rules with recommendations and requirements for entities such as health
plans, doctors, hospitals and other health care providers. This regulation
challenges all entities to be able to assure that all patients’ account handling,
billing and medical records should be protected. More information can be
found at at http://hipaa.org

http://hipaa.org

3.4. POSSIBLE LEGAL REQUIREMENTS 9

3.4.2 Gramm-Leach-Bliley Act

The Gramm-Leach-Bliley Act consists of regulations developed for financial
institutions, it is also known as the Financial Modernization Act 1999.

This federal law enables the United States to control financial institu-
tions and the manner in which they handle and process private informa-
tion of individuals. The Privacy Rules apply to financial institutions and
their activities. Affected institutions could also be non bank companies that
deal with lending, brokering, auditing, transferring or safeguarding money,
preparing return of tax payment, providing financial advice and credit, pro-
viding residential real estate settlement services, collecting consumer debts,
and more. The Act consists of Privacy obligation policy which emphasizes
protection of non-public personal information. More information can be
found at http://banking.senate.gov/

http://banking.senate.gov/

Chapter 4

OpenPGP

4.1 Introduction to OpenPGP

OpenPGP is the most widely used email encryption standard in the world.
The OpenPGP standard was originally derived from PGP (Pretty Good Pri-
vacy), first created by Phil Zimmermann in 1991, and is now maintained by
the OpenPGP Working Group of the Internet Engineering Task Force.

One of the great advantages of the framework is that it is flexible in terms
of which cryptographical methods is to be used, id est it doesn’t depend on
one specific digital signature algorithm, or digital encryption algorithm. As
such it is sustainable throughout changing times.

Some of the content in this chapter, including information about different
key types and digest algorithms is mostly for people with a special interest.
Hence you can safely skip over the content and go to the next chapter. I do,
however feel it is necessary to write something about it in order to present
OpenPGP adequately.

4.2 Implementations

The most common implementations of the OpenPGP standard are the prod-
ucts GNU Privacy Guard that will be discussed at a later point and the
commercially available PGP product found at http://www.pgp.com.

I will focus on GnuPG since it is open source software available for free,
but there is no obstacle to communicate safely between the different imple-
mentations.

10

http://www.pgp.com

4.3. PUBLIC KEY INFRASTRUCTURE 11

4.3 Public Key Infrastructure

The foundation for OpenPGP evolve around something called public key in-
frastructure, often abbreviated PKI. Using PKI, that the special key used
to encrypt a message is not the same as used to decrypt it. When a different
key is used for encryption and decryption, the scheme is referred to as asym-
metrical. If, on the other hand the same key is used both for encryption and
decryption, the scheme is referred to as symmetrical. An analogy would be a
lock in the daily life. You can safely transmit the locking key, referred to as
a public key in an asymmetrical scheme. While you still keep the unlocking
key, the private (or secret) key. You can then make the public key available
for everyone, but only you keep the private key yourself. So if a neighbour
walks by your door to find it unlocked, he or she can lock the door, using the
locking key, but still not be able to unlock it again.

4.4 Hybrid system

OpenPGP is a hybrid system. For each new message that is sent, the content
of the message is first compressed, then encrypted using a symmetrical block
cipher to a random session key of a given length. This session key again is
encrypted using the Public Key Infrastructure (PKI) to the different recipi-
ents’ public keys. Hence, only the session key has to be encrypted multiple
times and not the message.

4.5 Asymmetrical key types

Although the default settings are a good choice for most, those who grow
interested in knowing what it is doing will want to know about the different
types of keys in existence. Although some key types can be used both for
encryption and signing, it is generally recommended never to use the same
key for both uses at the same time. As a result of this a keyset generally
consists of a master signing key and an encryption subkey. More advanced
users will also consider using a signing subkey. The advantage of this is that
it can be revoked at any time and generate a new signing subkey, but still
have signatures from others for the master key in order to keep your position
in the web of trust. A signing subkey should always be cross-signed with the

12 CHAPTER 4. OPENPGP

master signing key, otherwise you can’t know if the subkey truly belongs to
the master key without requiring a challenge from the one claiming be the key
holder. Historically the PGP key type was RSA version 3, although version
4 keys are more common today. Following is a little information about RSA.

4.5.1 RSA

RSA is short for Rivest, Shamir, Adleman, the names of the creators of the
algorithm. RSA keys can, in theory be of any size, although most will want
a 2046 bit or a 4096 bit key. Its security is based on the factoring problem,
id est it is easy to calculate a product of two primes, but not easy to go from
the product to get the two factors again as well as the RSA problem.

Clifford Cocks, a British mathematician working for the UK intelligence
agency GCHQ, described an equivalent system in an internal document in
1973, but given the relatively expensive computers needed to implement it at
the time, it was mostly considered a curiosity and, as far as is publicly known,
was never deployed. His discovery, however, was not revealed until 1997 due
to its top-secret classification, and Rivest, Shamir, and Adleman devised RSA
independently of Cocks’ work. (http://en.wikipedia.org/wiki/RSA)

4.5.2 DSA

DSA is the Digital Signature Algorithm, or the Digital Signature Standard
(DSS)[2, 3, 6]. Version 1 was adopted in 1994, where the DSA is originally
defined with the key length 1024 bits, and a q-size of 160 bits. Support for
larger key sizes has since been added, commonly referred to as DSA2. As a
result of this older implementations of OpenPGP might lack the ability to
properly use DSA2 keys.

As opposed to RSA, DSA requires a specified q-size to be used for sig-
nature generation. The relationship between the key sizes defined in DSA2
and the q-sizes, and as such the hashes that can be used is listed in the table
below.

http://en.wikipedia.org/wiki/RSA

4.6. DIGEST ALGORITHMS (HASHES) 13

DSA key size q-size Hashes that can be used
1024 160 SHA-1, SHA-224, SHA-256,

SHA-384 or SHA-512 hash
2048 224 SHA-224, SHA-256, SHA-

384 or SHA-512 hash
2048 256 SHA-256, SHA-384 or SHA-

512 hash
3072 256 SHA-256, SHA-384 or SHA

512 hash

Using a hash that is greater than the q size will lead to truncation, and
the q size will be used for signature generation.

4.5.3 ElGamal

ElGamal is named after the creator, Taher ElGamal and is baseed on the
discrete logarithmic problem for security. ElGamal keys are only used for
encryptions. Although it is technically possible to generate a signing key
using this key type, there have been security reasons not to and the support
for such keys are generally not included. The Digital Signature Algorithm is
a variant of the ElGamal signature scheme that counters the issues that was
discovered, but the method itself is not to be confused with ElGamal.

4.6 Digest Algorithms (hashes)

First of all, let me make very clear that there is a difference between a cryp-
tographic hash, or a digest algorithm, and the procedure commonly referred
to as encryption. And the difference is in the ability to reverse the action.
When you encrypt something, you want to be able to decrypt it to read it at
a later point. This is not true for digest algorithms, they serve a very specific
purpose.

4.6.1 SHA-1

The Secure Hash Algorithm (SHA) family is a set of related cryptographic
hash functions. The SHA algorithms were designed by the National Security
Agency (NSA) and published as a US government standard. SHA-1 has a
size of 160 bits and is traditionally the default digest algorithm.

14 CHAPTER 4. OPENPGP

This algorithm has however been cryptographically broken, in that the
operations required to find a collision has been reduced from 280 operations
(while factoring in the birthday paradox of a 160 bit original digest length)
to at least 263 operations.

Most of the attacks are given plaintext attacks, say you have two different
contracts, one that says $1,000 and one that says $1,000,000. You send off
the one saying client is supposed to pay $1,000 and the signature is valid for
the $1,000,000 too. The basis of this attack is that you had access to alter
both messages beforehand by padding using NULL characters. If the client
was smart he would have altered the contract slightly before signing to avoid
such an attack.

It is however only a matter of time till a collision can be produced of an
arbitrary given text, and one should move on to other, and stronger, hashes.

4.6.2 SHA-2 family of hashes

The SHA-2 family of hashes consists of several digest lengths. The most
common are sha256 and sha512 The numbers represents the length of the
digest algorithms, 256 bits and 512 bits respectively.

These were first released as an official standard[5] in 2002, and as such
there are compatibility issues with prior OpenPGP implementations, and
should be used accordingly. The other family members are sha384 and
sha224, these are however only truncated versions of sha512 and sha256 re-
spectively, and are not seen as much in practice.

4.6.3 RIPEMD160

RACE Integrity Primitives Evaluation Message Digest is a 160-bit message
digest algorithm (cryptographic hash function) developed in Europe by Hans
Dobbertin, Antoon Bosselaers and Bart Preneel, and first published in 1996.
It is an improved version of RIPEMD, which in turn was based upon the
design principles used in MD4, and is similar in performance to the more
popular SHA-1.

There also exist 128, 256 and 320-bit versions of this algorithm, called
RIPEMD-128, RIPEMD-256, and RIPEMD-320, respectively. The 128-bit
version was intended only as a drop-in replacement for the original RIPEMD,
which was also 128-bit, and which had been found to have questionable
security. The 256 and 320-bit versions diminish only the chance of accidental

4.7. SYMMETRICAL KEY TYPES 15

collision, and don’t have higher levels of security as compared to, respectively,
RIPEMD-128 and RIPEMD-160.

RIPEMD-160 was designed in the open academic community, in contrast
to the NSA-designed algorithm, SHA-1. On the other hand, RIPEMD-160
is a less popular and correspondingly less well-studied design.[10]

4.7 Symmetrical key types

4.7.1 Advanced Encryption Standard Process

The Advanced Encryption Standard (AES) is a process by the US govern-
ment. Fifteen different symmetrical block ciphers were submitted to the
process, in alphabetical order: CAST-256, CRYPTON, DEAL, DFC, E2,
FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Ser-
pent, and Twofish. Out of these the five block ciphers: MARS, RC6, Rijndael,
Serpent, and Twofish got to the final round of selection, of which Rijndael
got selected as AES.

The interesting factor might be that from a purely academic point of
view, Rijndael was not the most secure algorithm, however it was the most
resource-efficient choice. NIST states “Based on the security analysis per-
formed to-date, there are no known security attacks on any of the five final-
ists, and all five algorithms appear to have adequate security for the AES.
In terms of security margin, MARS, Serpent, and Twofish appear to have
high security margins, while the margins for RC6 and Rijndael appear ad-
equate. Some comments criticized Rijndael for its mathematical structure
and Twofish for its key separation property; however, those observations have
not led to attacks”.[4]

4.7.2 AES

As written in the Advanced Encryption Standard Process, Rijndael got se-
lected as the AES. AES is defined with key lengths of 128, 192 and 256 bits,
referred to as AES128 (or simply AES), AES192 and AES256.

16 CHAPTER 4. OPENPGP

4.7.3 Twofish

Twofish was an AES candidate provided by Bruce Schneier. Although the
candidate did not get selected for AES, he writes “Of course I am disappointed
that Twofish didn’t win. But I have nothing but good things to say about
NIST and the AES process”.[8]

Twofish utilizes 128 bit data blocks, and can use a key length up till 256
bits.

4.7.4 Blowfish

Blowfish, is as Twofish, designed by Bruce Schenier. It was originally de-
signed to replace the aging Data Encryption Standard and can use a key size
between 32 and 448 bits.

There have been concerns about the 64 bit block sizes used, as it can leak
information about the cleartext with message lengths greater than 232 data
blocks (accounting for the birthday attack). That said, this is very unlikely
to affect email messages, but twofish is generally recommended in situations
where larger plaintext is to be encrypted (more than 32 gigabytes).

4.7.5 IDEA

IDEA is short for International Data Encryption Algorithm. The cipher
was designed under a research contract with the Hasler Foundation, which
became part of Ascom-Tech AG. IDEA uses a 128 bit key on 64bit blocks,
and is patented in a number of countries.

IDEA was used in Pretty Good Privacy (PGP) V2.0, and was incorpo-
rated after the original cipher used in v1.0 ("Bass-O-Matic") was found to
be insecure. It is an optional algorithm in OpenPGP. IDEA is patented in
at least Austria, France, Germany, Italy, Japan, The Netherlands, Spain,
Sweden, Switzerland, The UK and The US. The patents will expire in 2010
- 2011. Today, IDEA is licensed worldwide by MediaCrypt.

IDEA is freely available for non-commercial use, as well as available out-
side the patent areas, and it is required for backwards compatibility with
systems such as PGP 2.0. That said, I would urge the individual to upgrade
to a newer system supporting more alternatives.

For advanced users only:
For GnuPG version 1 adding IDEA support is a relatively trivial

4.7. SYMMETRICAL KEY TYPES 17

matter (for an advanced user in a situation that requires it in the
first place, this should be very few). Windows users can down-
load the pre-compiled binary (.dll) from http://ftp.sunet.se/
wmirror/gnupg/documentation/faqs.en.html . Uncompress the
archive and put the idea.dll file in c:\lib\gnupg\ (create the
necessary folders). After that add the configuration line “load-
extension idea” to gpg.conf. Users of other operating systems
will have to compile it from source, information about how this
can be done is found in the .c source code.

For GnuPG version 2 adding IDEA support can be slightly more
tricky, at least it was, since no compatible version existed for it. I
wrote this myself, and made it available at http://www.kfwebs.
net/articles/article/42.

http://ftp.sunet.se/wmirror/gnupg/documentation/faqs.en.html
http://ftp.sunet.se/wmirror/gnupg/documentation/faqs.en.html
http://www.kfwebs.net/articles/article/42
http://www.kfwebs.net/articles/article/42

Chapter 5

The Web of Trust

5.1 The social problem

Despite its many advantages, the primary disadvantage of being able to send
emails in a safe manner is that, to be able to make proper use; as many as
possible require compatible systems.

This is a social problem that can only be met by education with regards
to safe communication. I hope that, in addition to configuring the system
yourself, also will find others that can be interested and help them configure
and use OpenPGP and hence start building your own Web of Trust.

This is a natural way to start using OpenPGP. First installing it on your
own computer. Then help an acquaintance or a family member to install a
compatible system and hence you two will be able to communicate securely.
Other persons can then be added to the Web of Trust one by one, expanding
it little by little.

As with telephone services, if only one person has a phone, its not worth
anything to you. The network is what makes it valuable. Until people
understands the necessity for safe communications others won’t be able to
make proper use of it either. Hopefully this book will make it easier for
yourself and others to secure communication your communication.

I recommend advertising that you use OpenPGP yourself in order for
others that use it to know that they can communicate with you securely.
Personally I have the following in my email signature of every outgoing email:

18

5.2. KEY VALIDITY / TRUST 19

This email was digitally signed using the OpenPGP
standard. If you want to read more about this, visit:
http://www.secure-my-email.com

Public PGP key 0x6B0B9508 at http://www.kfwebs.net/pgp/

5.2 Key Validity / Trust

Now, simply having the public key of a person isn’t enough, as anyone can
create a keyset with any data and upload it to a keyserver. This is why you
should verify with the person that it indeed is their own key. If this is a
friend it is generally fairly easy as you can call and verify the key id and
fingerprint, and recognize by voice that it is the correct person. Or if it is
a business associate and you get to see his driver’s license, and note down
the key id and fingerprint. But if it is someone more distant it gets more
difficult.

That is where the Web of Trust comes into play. To show yourself and
others that you have verified that another person’s public key in fact belong
to the person, and hence confirmed the identity of the owner, you digitally
sign the other person’s key. You may, or may not, trust that the other person
properly verify and sign keys, but if you believe that the individual does, you
can use the digital signature verification again to verify your own trust.

Why all this? Now, if someone trust you to properly verify keys, they
can know that your friend is who he claims he is, by looking at your digital
signature in his or her public key. They don’t have to go through the work
of verifying the key, you have already done so.

Ok, that got a little bit complex, so let us illustrate it with Figure 5.1 on
page 20.

Now, it is important to understand that whether you decide to trust Alice
to sign other keys or not is a personal matter, and other’s won’t see it. Hence
if Alice trust Daniel to sign keys, you still won’t trust Fredrik.

So, why does this matter? Well, since one of the goals is verifying that
emails come from the person that it claim it come from, you need to be able
to see if the key belong to the actual person.

http://www.secure-my-email.com
http://www.kfwebs.net/pgp/

20 CHAPTER 5. THE WEB OF TRUST

Figure 5.1: Web of Trust

5.3 Keyservers

In order to make exchanging public keys easier, a series of key servers for
OpenPGP have been configured around the world. These keyservers are
storing massive amounts of keys, and synchronizes between each other. In-
stead of having to send your key to everyone already having your OpenPGP
Public key if it changes, e.g. because someone new signs it, you upload it
to a keyserver and people refreshes your key from there from time to time.
At the time of writing the keyservers hosted by myself both holds about two
and a half million keys.

Different keyservers can be found at http://sks-keyservers.net , and
the round-robin DNS x-hkp://pool.sks-keyservers.net can be used to al-
ways find an available keyserver. In this context, HKP is an abbreviation
for Horowitz Keyserver Protocol. As the protocol is not officially recognized
by IETF it is often prefixed “x-”, but hkp:// refers to the same protocol.
HKP works on top of the standard web protocol, Hypertext transfer proto-
col (HTTP), defaulting to use port 11371 instead of 80, so x-hkp://pool.sks-
keyservers.net is the same as specifying http://pool.sks-keyservers.net:
11371

http://sks-keyservers.net
http://pool.sks-keyservers.net:11371
http://pool.sks-keyservers.net:11371

5.4. USING CERTIFICATE AUTHORITIES TO EXTEND THE WOT21

5.4 Using Certificate Authorities to extend the
WoT

As maintaining the Web of Trust can require a great deal of work, there are
situations where one wants to assign trust to a Certificate Authority (CA).
This is done by default in other crypt systems, such as S/MIME and the
HTTPS (SSL).

Using OpenPGP the choice whether or not to trust a certificate authority
is given to the user. This gives OpenPGP an advantage over other systems
that depends on CAs by default. The most known CAs today are Verisign and
Thawte (a VeriSign company) but there are also attempts on communities
such as http://cacert.org to be a generic certificate authority.

In a corporate setting it can be valuable to have a company signing key
that is used when a trusted member of the company has verified a peer’s
credentials. This key can then be trusted by all employees to extend their
Web of Trust, instead of all the employees having to check the credentials on
their own.

http://cacert.org

Chapter 6

A balanced cryptosystem

A cryptosystem is only as strong as its weakest component, which brings
up an interesting point regarding what would constitute a balanced cryp-
tosystem. The basis is generally that you will want a minimum of security,
generally defined with the basis in equivalence of symmetric key size. Such
a relationship is shown in Table 6.1.

Symmetric key size Asymmetric Key Length Hash size
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Table 6.1: Shannon entropy

Say you want a minimum security of 128 bits. This would mean that
the asymmetric keys would have to be at least 3072 bits, people would be
required to use at least 128 bit symmetric encryption (e.g AES) and the hash
used has to be at least 256 bits (e.g SHA256).

Of course, there is a limit to how far it is profitable to talk about the
strength of the cryptosystem, as the technical aspects of the security goes over
to physical attacks and/or monitoring as well as social engineering techniques
at one point. Human behaviour often understate the threat in order to satisfy
their own safety needs, often falsely. One example would be purchasing an
expensive pick-proof lock at your home door, and thereby feeling comfortable
that you have made the home safer for your family and yourself. However,
the windows are still just as easy to break through.

22

23

Security is, as a result often merely an illusion, an illusion sometimes made
even worse when gullibility, naivety, or ignorance come into play. Albert
Einstein is quoted as saying: “Only two things are infinite, the universe and
human stupidity, and I’m not sure about the former.”

Chapter 7

GNU Privacy Guard

7.1 Open Source – The GNU Project

The GNU Project was launched in 1984 to develop a complete UNIX-like
operating system which is free software: the GNU system. Variants of the
GNU operating system, which use the kernel called Linux, are now widely
used; though these systems are often referred to as “Linux”, they are more
accurately called GNU/Linux systems.

One can read more about the GNU project at http://gnu.org

7.2 What is GNU Privacy Guard?

GnuPG is the GNU project’s complete and free implementation of the OpenPGP
standard that got introduced earlier in this book. GnuPG is Free Software
(meaning that it respects your freedom). It can be freely used, modified and
distributed under the terms of the GNU General Public License .

Version 1.0.0 was released on September 7th, 1999 after being developed
since the first release 0.0.0 in 1997. At the time of writing the current stable
versions are 1.4.11 and 2.0.18. With regards to OpenPGP use, all that is
needed is included in the 1.4 series, with version 2.0 adding extended support
for S/MIME and features such as the gpg-agent.

24

http://gnu.org

7.3. INSTALLING GNUPG 25

7.3 Installing GnuPG

GnuPG can be obtained from http://www.gnupg.org . It already comes
installed for most flavours or GNU/Linux, if not it can be installed using the
package manager for your distribution. People using Microsoft’s Windows,
however, will have to install it. Pre-compiled binaries can be downloaded
from the project’s website. The installation procedure has improved magnif-
icently over the past years, introducing a native windows installer which has
helped getting a somewhat more wide-spread usage. Once downloaded you
have the file gnupg-w32cli-X.Y.Z.exe. To start the installation simply double
click the file, select the language, and press “next” until it completes. Another
alternative is to use the package provided by http://www.gpg4win.org/,
which include additional tools.

http://www.gnupg.org
http://www.gpg4win.org/

26 CHAPTER 7. GNU PRIVACY GUARD

7.4 Generating your first key

First a disclaimer: Here I’m going to go through the manual steps to generate
your first key set in GnuPG, using the command-line interface. This is an
operation that first-time wizards in different graphical front-ends will do for
you, but it can give some insight into the workings of GnuPG for those
interested.

But for those that like to do things manually, in order to have full flexibil-
ity, here we go: First you would open a command prompt. For windows one
would start by pressing the start button then press run followed by writing
“cmd”. This will bring up a box that look like:

This is the command line, some basic commands are: cd – change direc-
tory, e.g. “cd dir1” to go into a folder named dir1 and ”cd ..” to go back one
level. Now you want to navigate to where you installed GnuPG. In my case
that is “c:\Program Files\GNU\GnuPG” Now you can execute the gpg.exe
binary file using the command “gpg”. The gpg binary contain everything
you need to do. We want to generate a new set of keys. To do that we use
“gpg --gen-key”

7.4. GENERATING YOUR FIRST KEY 27

The default option here is a DSA and ElGamal keyset, which is okay for
most users. Be aware that if you want to use a digest algorithm such as
SHA256 you should select RSA signing key here. If you have such a need,
however, you can probably manage from this point onwards without the help
of this tutorial.

Pressing the Enter key here use the default option, and bring you to a
screen where you can select the size, just press enter here again to use the
default, a 2048 bit encryption key and a 1024bit signing key.

Press enter one more time and you set the key to never expire, and confirm
the action by pressing “y”. You will now be asked to write in your information,
your full name and your email address.

28 CHAPTER 7. GNU PRIVACY GUARD

Once correct press “o” to proceed. You will then be asked to insert a
passphrase that is used to protect your private key. Choose one at your will
that you will remember.

The next step take some time, but you don’t have to do anything yourself.
This is the actual key generation and require some noise in the system, so
contrary to other tasks you might be familiar with, the more you use the
computer for the faster it goes

7.5 Generating a revocation certificate

The next thing you want to do is generating a revocation certificate. A re-
vocation certificate is used in the event that you loose your private key or
the passphrase associated with it. Importing a revocation certificate into the
public key (and subsequently distributing the modified version) will invali-
date the key for further use, id est others won’t be able to verify messages
digitally signed using it, or encrypt messages to it.

To generate a revocation certificate use the command “gpg –gen-revoke key-id”

The key id- as well as other information abut the key you got after the key
was generated. In my case the key is 6B2AFB8 and I use “gpg --gen-revoke 6B2AFB8”
to generate the revocation certificate.

7.6. BACKING UP THE KEYRINGS 29

This produce the revocation certificate, in this case it look like

You now have your own keyset that you can use to communicate securely
with others. Store the revocation certificate someplace safe, and even print
a hard copy of it.

Congratulations you are now able to communicate safely.

7.6 Backing up the keyrings

On NT based Windows systems the two key rings, one containing the private
keys and the other the public keys can be found at \%appdata\%\gnu\gnupg
. In windows 9x based systems, you will most probably find the files pub-

30 CHAPTER 7. GNU PRIVACY GUARD

ring.gpg , secring.gpg and trustdb.gpg in the folder that contains the gpg
executable. As for Unix-like systems the natural place to look would be
$HOME/.gnupg .

No matter which operating system you use; you want to back up the
appropriate files.

7.7 Verifying a key

In order to verify a key you will have to establish contact to the key holder in a
trusted communication channel. As mentioned before this can be talking to a
friend on the phone, or it can be meeting up with someone in person, that you
recognize either by appearance or verify using already issued authentication
credentials such as a driver’s license.

What you want to do is to compare the User ID of the key, as well as
the master key ID and the primary key fingerprint. Let me show you how
you can get this information using GnuPG. Let us use my own key as an
example, with key ID 0x6b0B9508.

By issuing the commandline command: ”gpg --fingerprint 0x6b0b9508”
(two dashes). I get the following result:

[kristianf@kfc002 ~]$ gpg --fingerprint 0x6b0b9508
pub 4096R/6B0B9508 2005-02-21

Key fingerprint = 65F1 73BE C045 0DA0 7A58 6197 16E0 CF8D 6B0B 9508
uid Kristian Fiskerstrand <kristian.fiskerstrand@kfwebs.net>
uid Kristian Fiskerstrand <kf@kfwebs.net>
uid [jpeg image of size 5187]
sub 4096g/FD83BAC5 2006-11-01 [expires: 2007-12-29]

Lets break this information down a bit. 4096R indicates a 4096 bit RSA
signing key, the key ID that we looked for and got results for was 6B0B9508.
We want to make a note of this key id, as well as the primary key fingerprint
we got here, 65F1 73BE C045 0DA0 7A58 6197 16E0 CF8D 6B0B 9508. The
key fingerprint is a checksum (using the sha1 digest algorithm) of the public
key. We use this to confirm that the key has not been altered in any way
from what it was intended.

4096g indicates a 4096 bit ElGamal Encryption Key. There are in fact
three of these for my key, as I tend to generate a new one each year, but as

7.8. HOW TO SIGN A KEY USING GNUPG 31

the two former are expired, and this one is the last one to be generated it is
the only one to show in this window.

There are three different “uid”, or User ID fields for my key. The two first
are different email addresses, the third is a photo ID, a JPEG stored with
the public key in order to do facial recognition of myself.

7.8 How to sign a key using GnuPG

Although different graphical user interfaces (GUI) will allow give you a way
to sign keys, it happens that you want to do so using gnupg directly from
the command line.

If you were to sign my key you would issue the command “gpg –edit-key 0x6b0b9508”
(again double dashes is used). You would then write “sign” and press enter.
This should give you a question whether you want to sign all user id’s which
you can answer yes to,if that is, in fact what you want to do, if it isn’t you
can select which user IDs you want to sign by using “uid 1-3” (as I have three
different user ID’s). The selected user ids will be selected with an asterisk
(*). Follow the steps and exit using “save”.

7.9 How to assign trust to a key using GnuPG

As discussed above, trust is vital to how to interpret your web of trust. To
construct an example, let us say I am a good friend of yours that you trust
to verify other people’s public keys. Hence, every key that is signed by my
key 0x6b0B9508 is to be trusted by yourself.

After you have signed my key using the information in the section above,
you can assign my key a full trust. Let us get back in the edit key prompt
by again issuing ”gpg –-edit-key 0x6b0B9508” (again, double dashes are
used). But this time let us write “trust” instead of “sign”.

This brings up several choices, of which the important ones to us are:

32 CHAPTER 7. GNU PRIVACY GUARD

Marginal Trust By default three marginally trusted keys are
required to have signed a key before it is con-
sidered valid / trusted by yourself.

Full Trust This is the option we want to use in our
example, as you fully trust myself to verify
other keys. Full trust indicates that all keys
signed by this person are also to be consid-
ered trusted by yourself.

Ultimate Trust Ultimate trust should only be used on your
own keys.

7.10 Configuring GnuPG

GnuPG offers a great deal of configuration options for those wanting to cus-
tomize the usage. The default settings are sufficient for most but let us look
at some possible tweaks nevertheless. The gnupg configuration file is called
gpg.conf and if it exist it is found in the same data dir as the key files are
stored (ref. the chapter on backing up gnupg). Don’t be alarmed if you do
not find this file, however, as it is not generated by default. You will simply
have to create it.

The natural configuration directive to start looking at is the default-
key option . Simply adding a line to the file that, in my case looks like:
“default-key 6B0B9508” makes this the default key to use for signatures
when another isn’t specified.

Chapter 8

Organization in a grander scale

As a business or an organization increase in size it gets cumbersome for
each member to verify that the public keys really belongs to the different
individuals. At this point it is beneficial to introduce a Certificate Authority.
This can be the manager of a political team that signs each of the team
members keys, or a designated task within the business unit that is to be
trusted to properly verify keys.

For a business it would also make sense to have a different signing key
for customers and employees. But at that point one adds the keys more
importance than just that the user is who he or she claims to be.

At this point, let me emphasizes on the need to revoke signatures of keys
whenever an employee leaves the firm, hence invalidate the trust it for later
verification.

33

Chapter 9

Configuring your email client

9.1 Mozilla Thunderbird and Suite

Mozilla Thunderbird is the stand-alone, cross-platform, email client provided
by The Mozilla Foundation. It use XUL for its interface and mbox for storing
files on disk. Mozilla Thunderbird can be downloaded from. http://www.
mozilla.com . The primary focus over the Mozilla suite is being small but
extensible, and the extensibility support is used by Enigmail.

Enigmail is an extension to Mozilla that add support for OpenPGP as a
front-end for the GNU Privacy Guard. Enigmail can be installed using the
addon interface in Mozilla Thunderbird. The extension file can be down-
loaded at http://enigmail.mozdev.org . Full installation instructions are
available at http://enigmail.mozdev.org/documentation/quickstart.php.
html.

9.1.1 First time use

Starting to use Enigmail is very easy, assuming you have gpg installed ac-
cording to instructions. Enigmail include an own key management feature,
and a first-time wizard is in the making. To start using Enigmail you will
first have to generate a key. This can be done using the following procedure.
Enigmail>OpenPGP Key Management>Generate>New key pair.

34

http://www.mozilla.com
http://www.mozilla.com
http://enigmail.mozdev.org
http://enigmail.mozdev.org/documentation/quickstart.php.html
http://enigmail.mozdev.org/documentation/quickstart.php.html

9.1. MOZILLA THUNDERBIRD AND SUITE 35

You will be presented with the key generation window. Here you can
select which account you want it assigned to, and if you want it to be enabled
as soon as the key has been generated. We will have a look at the account
configuration afterwards. You’re name and email address will be gathered
from the account specified. You will and should specify a passphrase for
the private key. I suggest setting the key to not expire. As you get more
accustomed to GPG you can change the expiration date of the subkey used
for encryption only, while the primary key doesn’t expire. The default setting
is a 2048 bit key, which will produce a 1024 bit DSA signing key and a 2048
bit ElGamal encryption key. These are sane settings for most common usage.

9.1.2 Account settings

You can access the account settings by right-clicking on an account and
select properties. After installing Enigmail you will see an OpenPGP Security
entry. I prefer to sign all messages by default and also to encrypt all messages
by default. Ordinarily this will pop up a dialog every time you try to send
an email to anybody you don’t have a public key for, but we’ll tweak that in
the Engimail configurations afterwards.

36 CHAPTER 9. CONFIGURING YOUR EMAIL CLIENT

9.1.3 Enigmail settings

From the previous step we can press advanced to get the Enigmail settings.
These can also be found in the Enigmail menu > preferences. In the Key
selection tab I prefer to have never show dialog enabled. In addition to the
changes in the account settings this will automatically encrypt to everybody
you have a public key for, if not, send the email unencrypted without warning.

9.1. MOZILLA THUNDERBIRD AND SUITE 37

9.1.4 Retrieving keys

You should now be ready to send signed messages, however to encrypt to
anybody else, or to verify a signature you need the other persons public
key. If the other user has first sent an email, and the key is on a key server
this is a rather simple task, involving clicking the pen icon and accepting
that it download a new key. If you on the other hand don’t have an email
message available you would use the Key Management Window. This is also
a very simple task involving opening the key management dialog, selecting
key server and search for key. Then you can type in the name or email
address of the person you want to retrieve the key form and in most cases it
will exist

9.1.5 Signing keys

Key signing is vital to OpenPGP. As mentioned earlier in this book, you
sign a key to authenticate that you know that the key belong to the person
it claim to belong to.

38 CHAPTER 9. CONFIGURING YOUR EMAIL CLIENT

The Enigmail key management window provide for an easy way to sign
keys; You simply right-click on a key listed and select sign key. You will be
met by a dialog allowing you to select which key to use to sign, how carefully
you have authenticated the key, and a check box where you can mark the
signature as non-exportable or local. This implies that the key won’t be sent
to a keyserver if you send a key.

9.1.6 Sending and refreshing keys

For others to see that you have signed a key you will need to distribute the
altered public key some way (with your signature on it). The most common
way to do so is by using a keyserver. To upload a key to a keyserver you
merely right click on the key and select upload keys to keyserver. To refresh
a key you will do the same, right clicking and selecting refresh key from
keyserver. Refreshing implies downloading the key again so that you can get
updated related to the key. New signatures, new subkeys, or in the case the
key has been revoked you will be notified. I therefore recommend that you
do this once in a while.

9.2 OS X’s Mail.app

There is a distribution of GnuPG for the Mac platform, using the native
installer available at http://macgpg.sourceforge.net.

After MacGPG has been installed, generate your first OpenPGP key. The
procedure to do this is found in the chapter GNU Privacy Guard of this book.
To get to the console open Terminal in the Utilities folder of Applications.

http://macgpg.sourceforge.net

9.2. OS X’S MAIL.APP 39

You can now quit Mail.app if you have it open, and execute the installer
of GPGMail.

After it has completed, restart Mail.app and you should find a couple new
windows in the configuration section under the PGP tab.

40 CHAPTER 9. CONFIGURING YOUR EMAIL CLIENT

The first window you will be presented with is the Keys tab. If you have
multiple secret keys you can select which one to use by default here, or if you
want to use one key per account. If you have followed this book and started
from scratch you will have only one secret key, so the default here should be
ok. So time to move to the second tab, Composing.

9.2. OS X’S MAIL.APP 41

This tab has quite a lot more options to select from.

A message signed can still be read by others, even though they don’t have
compatible systems to verify the signature. Therefore I recommend signing
all outgoing messages, to enable people that have compatible systems to have
added security.

Encryption requires the other party’s public keys. The combination of
by default, encrypt messages and encrypt when all keys are available is a
good one. A compose window is shown below, here you see both PGP signed
and encrypted. As soon as you enter an email address that doesn’t have a
corresponding user id in a public key, it will be deselected by default, and if
you want to encrypt the message you will have to select the keys manually.

42 CHAPTER 9. CONFIGURING YOUR EMAIL CLIENT

This email is ready to be sent, both signed and encrypted. So go ahead,
press send.

9.3 Using GPG Relay for mail clients in Win-
dows

GPG Relay is an Open Source transparent proxy that operate between your
email client and your email server. This mean that you can use OpenPGP
even though your email client doesn’t have support for it directly. The project
website is http://sites.inka.de/tesla/gpgrelay.html

Before installing GPGRelay you should have the GNU Privacy Guard
installed, information can be found in the chapter GNU Privacy Guard.

The GPG Relay is a simple windows installation file, and is just to double
click to install. After installation you will be presented the option to run
GPGRelay. If you don’t have a keypair and/or keyring installed from before,
you can let GPG-Relay create one for you. If none is detected you will be

http://sites.inka.de/tesla/gpgrelay.html

9.4. EVOLUTION 43

presented with the following window
You can download the installation file from GPGRelay’s website. If you

want GPGRelay to handle Secure Socket Layer (SSL), you will also down-
load http://sites.inka.de/tesla/download/OpenSSL-0.9.7e.dll.zip .
This is an ordinary zip-file, that can be unzipped e.g. using WinZip or the
un-archiver in Windows. The unarchived files can be copied into the direc-
tory where you chose to install GPGRelay.

More information on use of GPGRelay is available at http://secure-my-email.
com/clients_gpgrelay.php

9.4 Evolution

Evolution is an integrated solution for email, contacts and calendar. It was
originally developed by Novell but is now an Open Source project. It is first
and foremost for the GNOME2 desktop system, but it work well for KDE3
as well, of which the screenshots of this article is based on.

Evolution include several features, including SpamAssassin for junk fil-
tering. I’ll focus most on the feature they call "Security and encryption".
Evolution include support for both S/MIME and OpenPGP, we will however
only focus on the OpenPGP support.

Evolution use GNU Privacy Guard5 for its OpenPGP support. If you
have this configured already it will start using Evolution with it straight
away, as it automatically verifies signatures and decrypts messages. If you
don’t have GnuPG configured, please read the chapter GNU Privacy Guard
before proceeding.

After that, the direct support makes it very easy to use.

9.4.1 Small drawback

One thing I encountered when testing Evolution is that it (confirmed with at
least versions 2.2.3 and 2.4.2.1) require the encrypted data to be RFC 1847
Encapsulated. It does not support the other method of both digitally signing
and encrypting defined in RFC 3156[1, Ch. 6.1-6.2].

The ramifications of this is that although Evolution will decrypt an OpenPGP/MIME
message sent this way, it will not show the box for a valid signature. Other
email clients, such as Mozilla Thunderbird with Enigmail as an extension
to handle the security use the combined method by default when sending

http://sites.inka.de/tesla/download/OpenSSL-0.9.7e.dll.zip
http://secure-my-email.com/clients_gpgrelay.php
http://secure-my-email.com/clients_gpgrelay.php

44 CHAPTER 9. CONFIGURING YOUR EMAIL CLIENT

a message using OpenPGP/MIME. It will be able to properly verify both
methods. The workaround to this quirk is to use Inline messages instead of
OpenPGP/MIME.

More information on use of Evolution is available at http://secure-my-email.
com/clients_evolution.php

http://secure-my-email.com/clients_evolution.php
http://secure-my-email.com/clients_evolution.php

References

[1] Internet Engineering Task Force. Mime security with openpgp, Aug
2001. URL http://www.ietf.org/rfc/rfc3156.txt.

[2] National Institute of Standards and Technology. Digital signature stan-
dard (DSS) v1, 1994. URL http://www.itl.nist.gov/fipspubs/
fip186.htm.

[3] National Institute of Standards and Technology. Digital signature
standard (DSS) v2, 2000. URL http://www.cs.haifa.ac.il/~orrd/
IntroToCrypto/online/fips186-2.pdf.

[4] National Institute of Standards and Technology. Report on the de-
velopment of the advanced encryption standard (AES), 2000. URL
http://csrc.nist.gov/archive/aes/round2/r2report.pdf.

[5] National Institute of Standards and Technology. Secure hash standard,
2002. URL http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2.pdf.

[6] National Institute of Standards and Technology. Digital signature stan-
dard (DSS) v3, 2009. URL http://csrc.nist.gov/publications/
fips/fips186-3/fips_186-3.pdf.

[7] European Parliament. Report on the existence of a global system for the
interception of private and commercial communications (echelon inter-
ception system) (2001/2098(ini)), 2001. URL http://cryptome.org/
echelon-ep-fin.htm.

[8] Bruce Schneier. Crypto-gram newsletter, october 15, 2000. URL http:
//www.schneier.com/crypto-gram-0010.html#8.

45

http://www.ietf.org/rfc/rfc3156.txt
http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.cs.haifa.ac.il/~orrd/IntroToCrypto/online/fips186-2.pdf
http://www.cs.haifa.ac.il/~orrd/IntroToCrypto/online/fips186-2.pdf
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://cryptome.org/echelon-ep-fin.htm
http://cryptome.org/echelon-ep-fin.htm
http://www.schneier.com/crypto-gram-0010.html#8
http://www.schneier.com/crypto-gram-0010.html#8

46 REFERENCES

[9] Alma Whitten and J.D. Tygar. Usability of security: A case study, Dec
1998. URL http://reports-archive.adm.cs.cmu.edu/anon/1998/
abstracts/98-155.html.

[10] Wikipedia. Ripemd-160. URL http://en.wikipedia.org/wiki/
RIPEMD.

http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-155.html
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-155.html
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD

	Introduction
	Understanding digital signatures
	What is a digital signature
	How can a digital signature help you?

	Encryption
	History of encryption
	Industrial espionage
	The Echelon surveillance system
	Possible legal requirements
	HIPAA
	Gramm-Leach-Bliley Act

	OpenPGP
	Introduction to OpenPGP
	Implementations
	Public Key Infrastructure
	Hybrid system
	Asymmetrical key types
	RSA
	DSA
	ElGamal

	Digest Algorithms (hashes)
	SHA-1
	SHA-2 family of hashes
	RIPEMD160

	Symmetrical key types
	Advanced Encryption Standard Process
	AES
	Twofish
	Blowfish
	IDEA

	The Web of Trust
	The social problem
	Key Validity / Trust
	Keyservers
	Using Certificate Authorities to extend the WoT

	A balanced cryptosystem
	GNU Privacy Guard
	Open Source – The GNU Project
	What is GNU Privacy Guard?
	Installing GnuPG
	Generating your first key
	Generating a revocation certificate
	Backing up the keyrings
	Verifying a key
	How to sign a key using GnuPG
	How to assign trust to a key using GnuPG
	Configuring GnuPG

	Organization in a grander scale
	Configuring your email client
	Mozilla Thunderbird and Suite
	First time use
	Account settings
	Enigmail settings
	Retrieving keys
	Signing keys
	Sending and refreshing keys

	OS X's Mail.app
	Using GPG Relay for mail clients in Windows
	Evolution
	Small drawback

